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1 Introduction

1.1 Introduction to Forward Contracts

• A forward contract is an agreement concluded between two counterparties to buy
or sell an underlying asset for a contracted delivery price at a certain point in
time in the future.

• We represent a forward contract graphically below. The sale of the underlying
asset takes place at time t0. At this time there is an agreement on the price and
the underlying asset/product. The transaction takes place at time T . At time

Figure 1.1: The time line of a forward contract.

• Time t0 is the inception of the forward contract.

– At this time there is a valid purchase agreement from al legal point of view:
there is an agreement upon the price and the product.

– At this time there is an agreement that the deal will be settled, at some
point in the future; however there are no cashflows at this time.

– The price determined at this time is called the delivery price, this price will
be paid at maturity T.

• Time T is called the maturity of the forward contract.

– At this time, payment and delivery take place.

• Throughout this chapter we will use specific vocabulary and corresponding
notations.

– T = the maturity.

– τ = (T − t0)= the time to maturity.

– DP = the delivery price.

– F = the forward price.

– St0= the spot price of the underlying at time t0.

1



1.2 Parties involved in a forward contract

• There are two parties involved in a forward contract i.e. the long party and the
short party.

1. The long party.

– The long party has the obligation to buy the underlying.

– The long will gain from a rising asset price. The forward contract
allows him to buy the underlying at a lower price than the spot price
at maturity T . This allows him to realize a profit. The long buys the
underlying at the delivery price DP via the forward contract and can
immediately sell the asset spot at the higher spot price at maturity ST .

– In general, the long party is the party in a derivatives contract that
profits from a rising price in the underlying.

2. The short party.

– The short party has the obligation to sell the underlying.

– The short will gain from a decreasing asset price. The forward contract
allows him to sell the underlying at a higher price than the spot price
at maturity T . This allows him to realize a profit. The short buys the
underlying spot at the spot price at maturity ST and immediately sells
the asset via the forward contract at the higher delivery price DP .

– In general, the short party is the party in a derivatives contract that
profits from a declining price in the underlying.

• In summary, there is a short party and a long party in a forward contract. The
party that is short in the forward contract has the obligation to sell the underlying
at maturity T at the contracted delivery price DP . The party that is long in the
forward contract has the obligation to buy the underlying at maturity T at the
contracted delivery price DP .

1.3 Settlement

• There are two ways in which a forward contract can be settled.

– Physical delivery of the underlying. The party that is long in the forward
contract takes delivery from the party that is short in the contract.

– Settlement in cash. When a forward contract is settled in cash; the delivery
price DP is compared with the the spot price of the underlying at maturity:
ST . This cash amount will switch hands between the 2 counterparties.

• In real life, most derivatives are settled in cash.

2



1.4 Types of traders in forward contracts

• People trade in forward contracts for a variety of reasons. Based on these reasons
we can distinguish different types of traders.

1. Hedgers. The goal of the hedger is to eliminate cashflow uncertainty from a
future transaction. Uncertainty can stem form different sources. Examples
are exchange rates, interest rates, commodity prices, etc.

2. Speculators. The goal of the speculator is to create an exposure to a certain
risk.

1.5 Characteristics of forward contracts

• We will now discuss the most important characteristics of the forward contract.

1. Future contracts are an Over The Counter product and a bilateral contracts.
This implies that these contracts are directly negotiated between buyer and
seller. For this reason they are highly customizable i.e. the contract can
be tailored to the needs of both parties. Because the contract is intuitu
personae, the contractual obligations cannot be transferred unilaterally to
third party. To get rid of the contract, there are two options:

a) The investor could seek to find a third party with whom he enters the
opposite position. In this case, the original derivative contract remains
on the books The exposure to the market risk created by entering into
the first forward contract then disappears. However, the exposure to
credit risk goes up because now, there are now two contracts and thus
two counterparties; both of which can default.

b) The investor could also try to enter the opposite position with the same
counterparty. This process is called ”novation”. This action cancels out
the obligations of both parties.

2. Forward contracts are settled at maturity date. There is only one settlement
date.

3. Both parties are exposed to default risk, this credit risk stems from the time
between concluding the agreement and the time of delivery.

Figure 1.2: The time between agreement and the cashflow, delivery.
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4. Forward contract incorporate an element of uncertainty. As we already know,
at time t0 the delivery price DP is agreed upon. However, the cashflow only
takes place at maturity T , in return the long receives the underlying with
value ST . The net cashflow (for the long position) becomes ST −DP0. It is
clear that the spot price of the underlying at maturity ST is the element of
uncertainty.

Figure 1.3: The long forward contract and uncertainty.

1.6 The payoff from a future contract

• In general, the payoff from a derivatives contract is denoted by fT . The payoff
from a derivatives contract is the net cashflow generated by the contract at
maturity date. It is the value of this derivatives contract at maturity T .

• Forwards are a zero sum game: the payoff from the short position is the negative
from the payoff of the long position, mathematically:

f Long fw.
T = −f Short fw.

T

• The value of a long position in a forward contract at maturity is the difference
between the present value of the underlying asset in the spot market and the
delivery price at maturity date. The underlying reasoning is as follows:

– The long party has the obligation to pay the contracted delivery price DP .
In return he acquires the underlying asset. This constitutes a negative
cashflow of magnitude DP

– The long party then has the possibility to immediately sell the underlying
asset at the prevailing spot price ST . This constitutes a positive cashflow of
magnitude ST .

– The value of a long position in a forward contract is therefore the difference
between both cashflows as listed above. Mathematically, this becomes:

f Long fw.
T = ST −DP

Where:

f Long fw.
T = the payoff of a long position in a forward contract, at maturity.

ST = the spot price of the underlying asset at maturity.

DP = the delivery price.
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• The value of a short position in a forward contract is the difference between the
present value of the underlying asset in the spot market and the delivery price at
maturity date. The underlying reasoning is as follows:

– The short party has the obligation to sell the underlying asset. In this
transaction he receives the contracted delivery price DP . This constitutes a
positive cashflow of magnitude DP

– The cost of selling the underlying asset is equal to the value of that asset
at the moment of the transaction. Therefore, the true cost is reflected by
looking at the market price of the underlying asset at the time of transaction.
The transaction takes place at the maturity T of the forward contract.
Therefore, selling the underlying asset constitutes a negative cashflow equal
to the spot price of the underlying asset at maturity ST . Mathematically,
this becomes:

f Short fw.
T = DP − ST

Where:

f short
T = the payoff of a short position in a forward contract, at maturity.

ST = the spot price of the underlying asset at maturity.

DP = the delivery price.

1.7 Payoff diagrams

• We now introduce payoff diagrams. In a payoff diagram, the payoff of a derivatives
contract at maturity fT is displayed as a function of the spot price of the underlying
at maturity ST . The horizontal axis represents the spot price of the underlying
value of derivative, at maturity: ST On the vertical axis, the payoff of the
derivative shown, this is the cashflow that is realized at maturity T for a certain
spot price ST of the underlying at maturity The payoff diagram is illustrated
graphically below.

Figure 1.4: A graphical depiction of a payoff diagram.
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• Consider the example of a forward contract where the contracted delivery price
DP is $100. The party that is long in the forward contract has the obligation
to buy the underlying at a price of $100 while the party that is short has the
obligation to sell the underlying at a price of $100. We now discuss the payoff
diagrams which are depicted in the figure below.

• First, consider the long position in the forward contract.

– If the spot price of the underlying at maturity is equal to the delivery price,
the payoff of the long forward contract is equal to zero. Mathematically:

ST = DP ⇐⇒ f Long fw.
T = 0

– The expression f Long fw.
T = ST −DP is called the payoff function, it gives

the value of the long forward contract for the long at maturity T .

– The payoff of the long forward contract f long
T is a linearly increasing function

of the spot price of the underlying at maturity ST . Possible losses are limited
to −DP . Possible gains are unlimited.

• Next, consider the short position in the forward contract.

– If the spot price of the underlying at maturity is equal to the delivery price,
the payoff of the short forward contract is equal to zero. Mathematically:

ST = DP ⇐⇒ f Short fw.
T = 0

– The expression f Short fw.
T = DP − ST is called the payoff function, it gives

the value of the short forward contract for the long at maturity T .

– The payoff of the short forward contract f short
T is a linearly decreasing

function of the spot price of the underlying at maturity ST . Possible losses
are unlimited. Possible gains are limited to DP − ST .

• Graphically, this becomes:
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Figure 1.5: Payoff diagram for the long (left) and the short (right) forward contract.
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• In summary.
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Figure 1.6: Payoff diagram for the long (left) and the short (right) forward contract.

– The horizontal axis depicts the value of the underlying asset at maturity.
The vertical axis depicts the payoff which is the net cashflow at maturity
date.

– When the payoff is equal to zero, the delivery price is equal to the price of
the underlying at maturity.

– The long position gains from rising prices in the underlying. For the long,
losses are limited while profits are limitless. This is because the value of
the underlying can only drop to zero in the worst case scenario, in which
case the long pays the agreed price and receives an asset of no value. In
contrast, there is no upper boundary to the payoff because the value of the
underlying at maturity can become very high. The long then only pays the
contracted delivery price but receives an asset of a much higher value.

– The short position gains from decreasing prices in the underlying. For the
short position losses are limitless and profits are limited. This is because
the value of the underlying can only drop to zero which is the best case
scenario for the short position. In that case, the short position receives the
agreed delivery price for an asset that has no value. In contrast, the value
of the underlying can become very high. In that case, the short will always
receive the same delivery price but has to deliver the asset which is of much
higher value.

– The range of possible spot prices of the underlying at maturity ST are given
by:

ST ∈ [0,+∞]
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1.8 Determining the delivery price of a forward contract

• At t0 there are no cashflows, the counter parties are just shaking hands: obligations
arise, but nothing else happens; the value of the forward contract, at the time it
is initiated is therefore zero.

• For standardized forward contracts, the delivery price is chosen in such a way
that the value of the contract upon concluding the agreement is of no value for
both parties. Mathematically:

f long
t0 = f short

t0
= 0

• When the price of the underlying starts to differ from the spot price at t0, the
forward contract gets value.

• Consider the following example:

– The value of a painting is $1000.

– We can take out a loan at 5% p.a.

– We ask the counter party to buy the painting on the spot market and to
sell it forward to us within one year.

– We now want to determine the forward price.

– Naturally, the short party expects to receive interest on the spot price of
the underlying. He needs to be compensated for postponing his sale. If the
short sells the underlying spot, he could invest the proceeds risk free and
receive interest.

– When the forward contract is initialized, it is of no value for both parties.
Therefore, neither the short party nor the long party expects an additional
return.

– Therefore, the delivery price is the capitalized amount of the spot price
today FV (Sto); calculated using the risk-free interest rate.

– The delivery price in the example becomes:

$1000 · (1 + 0.05) = $1050
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1.9 The bid-ask spread

• The ask price is the price at which we can buy. The bid price is the price at
which we can sell. The price for which we can buy i.e. the ask price is always
higher then the price at which we can sell i.e. the bid price.

• A bid-ask spread is the amount by which the ask price exceeds the bid price for
an asset in the market. The bid-ask spread is essentially the difference between
the highest price that a buyer is willing to pay for an asset and the lowest price
that a seller is willing to accept. An individual looking to sell will receive the bid
price while one looking to buy will pay the ask price. For this reason, there is
no such thing as a theoretical forward price in practice; this forward price sits
between the bid price and the ask price.

• In what follows, we will ignore the bid-ask spread: we will only consider theoretical
prices.

1.10 Arbitrage and the arbitrage-free price

• When the delivery price differs from a theoretical ’forward price’, arbitrage
opportunities arise.

• Consider the case where the delivery price is greater than the forward price
F > DP . In this case there exists arbitrage opportunities. An investor can set
up an arbitrage portfolio by following the following steps:

– At time t0 :

1. Take out a loan for an amount that equals the spot price of the underlying
against the risk free interest rate.

2. Buy the underlying G

3. Go short in a forward contract.

– At maturity date T :

1. Repay the loan (this amount is the forward price).

2. Sell the underlying for the delivery price.

• Consider the case where the delivery price is less than the forward price DP < F .
In this case there exists arbitrage opportunities. An investor can set up an
arbitrage portfolio by following the following steps:

– At time t0 :

1. Short the underlying value i.e. sell the underlying value and buy it back
on maturity.

2. Invest this amount (equal to the spot price of the underlying) against
the risk free rate.

3. Take a long position in a futures contract on the underlying value against
the lower delivery price.
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– At maturity date T :

1. The loan grants an amount equal to the futures price.

2. Sale of the underlying value against the lower delivery price.

• We can conclude that the theoretical futures price F is the only arbitrage-free
delivery price.

• Consider the example where the arbitrage-free delivery price F is equal $102.
The risk-free interest rate r is equal to 2% and the time to maturity τ is equal to
one year.

– First, suppose Louis wants to enter transactions at $103 This price is too
high because the forward price is equal to $102. We can therefore set up
an arbitrage portfolio by entering a loan and using these funds to enter in
a long spot position in the underlying. At the same time we enter a short
forward position. At maturity, the short position in the forward contract
is settled for the contracted delivery price by delivering the asset that was
procured at time t0. At the same time the loan is settled. Such a portfolio
is illustrated in the table below.

Position t0 T

Short forward contract $0 +$103

Long spot in underlying −$100

Loan +$100 −$102

Net cashflow $0 +$1

– Suppose Louis wants to enter transactions at $101 This price is too high
because the forward price is equal to $102. We can therefore set up an
arbitrage portfolio by entering a short position in the underlying, going
long in a forward contract and investing the proceeds at the risk-free rate.
At maturity, the underlying asset is procured via the long position in the
forward contract. The short spot position is closed by returning the asset.
The capitalized amount of the investment is also returned. Such a portfolio
is illustrated in the table below.

Position t0 T

Long forward contract $0 −$101

Short spot in underlying +$100

Investment −$100 +$102

Net cashflow $0 +$1
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• We can clearly see that the forward price is the only arbitrage-free delivery price.
When the delivery price DP differs from the theoretical forward price F , arbitrage
opportunities arise. This means that it is possible to realize a riskless profit by
constructing an arbitrage portfolio. Mathematically, this becomes:

F = St0 · (1 + r)

1.11 Linear and non-linear products

• Linear products are financial derivatives that have a linear payoff function i.e.
the payoff at maturity or the value of the contract at maturity fT is a linear
function of the spot price of the underlying at maturity ST .

• We can easily see that a forward contract is a linear product: every price increase
of the underlying value with $1 results in a price increase/decrease of the derivative
product (the forward contract), with $1. The payoff profile of the forward contract
has the same shape as the payoff profile of the underlying value. Forward contracts
are thus a special case of linear products: the slope of the payoff diagram is 45◦.

• This means that the payoff profile of a forward contract has the same shape as the
payoff of the underlying asset. This means that for every dollar increase/decrease
in the value of the underlying at maturity, the payoff of the forward will in-
crease/decrease with the same dollar amount.

• Non-linear products are derivatives whose payoff function is a non-linear function
i.e. the payoff of the contract is a non linear function of the sport price of the
underlying at maturity.

1.12 Future contracts

• A futures contract is an exchange traded, standardized forward contract (stan-
dardized amount, quality, delivery location, etc.) There are some important
differences with forward contracts:

• Forward contracts are OTC products; futures are exchange traded This means
that forwards can be tailor-made; futures are standardized.

• Forwards can not be unwound unilaterally, futures can: one can easily take the
opposite position and close out the original position while doing so.

• Forwards put default risk on the individual parties, futures assign the default
risk (credit risk) to the exchange: the original contract between the long and the
short is split into two separate contracts; which are both made with the exchange.
Every party that enters a future contract, has the exchange as its counterparty.
In this way, credit risk is reduced.

• Credit risk for forward contracts is managed with collateral agreements. Future
contracts use margin accounts. Every profit and every loss that a party makes is
transferred to the counterparty, within the same day. In this way credit risk is
avoided for both parties. Every day, there is a settlement.
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1.13 Swaps

• In a swap-agreement there are two counterparties i.e. swaps are bilateral contracts.
The two counterparties exchange a series of cashflows. The the cashflow series
that are described in the contract are called the ‘leg of the swap.’ Swaps have a
linear payoff profile which means that swaps are linear products. Standardized
swap agreements do not require upfront payment to enter into the swap position.

1.14 Options

• There are two possible positions in an option contract:

– A long position. This is the party that buys the option contract.

– A short position. This is the party that sells an option contract.

• An option is a financial derivative product which entails a right for one party and
an obligation for the other.

– From the point of view of the long position i.e. the buyer of the option, an
option entails a right.

– From the point of view of the short position i.e. the seller of the option, an
option entails an obligation.

• There exist different kinds of option contracts. They differ in the obligation/right
they grant to the party that is short/long:

– Options that give the long party the right to buy the underlying are called
call options. This means the short has the obligation to sell the underlying
when the option is exercised.

– Options that give the long party the right to sell the underlying are called
put options. This means the short has the obligation to buy the underlying
when the option is exercised.

1.15 Options and forward contracts compared

• A forward contract entails the obligation to buy or sell the underlying at maturity,
at a prefixed price. This obligation is completely unconditional. Whatever
happens; the long will have to buy the underlying and the short will have to sell
the underlying.

• Going short in an option contract also gives rise to an obligation. However this
obligation is conditional. When the long party in the option contract does not
want to exercise his right to buy or sell the underlying; he is not obligated to
do so. This means that going short in an option contract entails taking on a
conditional obligation. If it is not in the advantage of the long to exercise the
option, the short will not have to do anything at all.

12



• We have to pay attention to the terminology.

– In the case of option contracts, going long refers to buying the option contract.
The long party has the right to buy or sell the underlying. Going short
refers to selling the option contract. The short party has the conditional
obligation to buy or sell the underlying.

– In the case of forward contracts, going long refers to entering a position
where one would benefit from a rise in the price of the underlying. Going
short refers to entering a position where one would benefit from a decline in
the price of the underlying.

1.16 Plain vanilla options

• A plain vanilla option is an option that gives the buyer of this option the right to:

– Buy (call option) or to sell (put option),

– a certain amount of underlying (the contract size),

– at an agreed price (the strike price or exercise price),

– at maturity date (European style) or up to maturity date (American style).

• Plain vanilla options are also called standard European style and American style
calls and puts. Exotic options are options that differ from plain vanilla options
in one or more ways.

1.17 Time of exercise

• Option contract can differ in terms of when they can be exercised by the long
party. We discern the following broad categories:

– European style options i.e. options that give the right to exercise, only at
maturity

– American style options i.e. options that can be exercised at any moment
during the maturity period.

– Bermudian style options i.e. options that can be exercised at specific moment
or during specific period.

Figure 1.7: Different option styles.
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1.18 Types of Options

• There exist different types of options. Some examples are listed below.

– Options as such.

– Embedded options i.e. options embedded in another contract or product.
Examples are callable bonds and convertible bonds mortgages.

– Real options.

1.19 Applications of option contracts

• Using options is ’pretty powerful’ because they allow the user to enter positions
with high leverage.

• Consider the example of a European call option on an underlying where the spot
price of the underlying at the time t0 is equal to $100. The spot price of the
underlying at the time t1 is equal to $120. The option premium is equal to $5.
The long pays the option premium while the short receives the option premium.

– The gross return on the underlying when going long in the spot market is
given by:

$120

$100
− 1 = 20%

– The return on a European call option, when going long in the option market
is given by:

$120− $100− $5

$5
=

$15

$5
= 300%

– It is clear that options are financial instruments that enable taking positions
with high leverage. We cannot forget however that leverage is a two-edged
sword. for example, if the value of the underlying St1 becomes $80, the gross
return on the long call option becomes:

$0− $5

$5
= −100%

– The gross return on a long spot position in the underlying under the same
circumstances is given by:

$80

$100
− 1 = −20%

– It is clear leverage works both ways.
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1.20 The moneyness of an option

• The term moneyness refers to how the strike price of an option is related to the
spot price of the underlying asset.

• The degree of moneyness M is defined as the ratio of the spot price of the
underlying St over the strike price of the option K. Mathematically:

M =
St

K

• An option is:

1. In the money.

– If immediate exercise would lead to a positive cashflow.

– For a call option, this means: K < St.

– For a put option, this means: K > St.

2. Out of the money.

– If immediate exercise would lead to a negative cashflow.

– For a call option, this means: K > St.

– For a put option, this means: K < St.

3. At the money.

– if immediate exercise would lead to a zero cashflow.

– This means: K = St.

1.21 Option premia

• An option premium is the current market price of an option contract. It is thus
the income received by the seller (writer) of an option contract to another party.
An option premium is quoted per unit of the underlying.
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1.22 Payoff from an option contract

• First we discuss the payoff of the long call option. The payoff of a contract is
defined as the net cashflow generated by the option contract, at maturity date or
also as the value of the contract at maturity date. The call option gives the long
position the right to buy the underlying value at the fixed exercise price K, at
maturity T .

– Consider the example of a long call option where the exercise price K is
equal to $100

1. First, consider the case where the spot price at maturity ST is greater
than the exercise price K. Suppose for example that the spot price at
maturity is equal to $120. Mathematically:

ST > K

$120 > $100

The long could buy the underlying at $100 and immediately sell on the
market at $120, thus realizing a payoff of $20. Mathematically:

ST −K = $120− $20

= $20

In this case, the payoff consists of the difference between the spot price
at maturity and the exercise price.

f Long call
T = ST −K

2. Next, consider the case where the spot price at maturity ST is lower
than the exercise price K. Suppose for example that the spot price at
maturity is equal to $75. Mathematically:

ST < K

$75 < $100

The option won’t be exercised: the option owner let’s the option expire.
The payoff is zero in this case:

f Long call
T = 0

– The payoff of the long call option is therefore given by:

f Long call
T =

{
0, K > ST

ST −K, K < ST
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– We can now construct the payoff diagram for the long call option of our
example. Graphically, this becomes:
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Figure 1.8: Payoff diagram for the long call option.

– A long call option is a bullish instrument: one speculates on the upside. If
the underlying goes up in value, the speculator wins. If the underlying goes
down in value, the speculator loses. There is no limit on the upside: as long
as the value of underlying goes up in value, the payoff will rise.

– We see the linear relationship in the payoff diagram from the forward
contract: in a payoff diagram, a long forward contract and a long call option
have the same linear relationship if ST > K.

– However, the option contract dominates the forward contract. With a long
forward contract, the delivery price is set in such a way that on t0 the
contract has no value for both parties. Hence, there is no cashflow on t0.
The long forward can win or lose. The long call option cannot lose. When
ST < K he lets the option expire. Because the value of the forward is zero
at t0, the value of the option needs to be positive at t0. One will need to
pay a premium to acquire a long call option. This premium is called to the
short party in the option contract.
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– The differences between the long call option and the long forward contract
become clear when comparing their payoff diagrams:
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Figure 1.9: Payoff profiles of the long call option and the long forward contract.

• We now discuss the payoff from a short call option.

– Options are a zero sum game; the payoff diagram of a short call option
therefore is the mirror image of the payoff diagram for a long call option on
the same underlying.
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Figure 1.10: Payoff diagrams of the long and the short call option.
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• Next, consider the payoff from a long put option. A long put option gives the
owner the right to sell the underlying at a certain, fixed price.

– Consider the example of a long put option where the exercise price K is
equal to $100.

1. First, consider the case where the spot price at maturity ST is lower
than the exercise price K. Suppose for example that the spot price of
the underlying at maturity is equal to $80. Mathematically:

ST < K

$80 < $100

The long could buy the underlying at $80 on the spot market and
immediately exercise his option and sell the underlying at $100, thus
realizing a payoff of $20. In this case, the payoff consists of the difference
between the exercise price and the spot price. Mathematically:

f Long put
T = $100− $80

= $20

2. Next, consider the case where the spot price at maturity ST is greater
than the exercise price K. Suppose for example that the spot price of
the underlying at maturity is equal to $120. Mathematically:

ST > K

$80 > $100

The option won’t be exercised: the option owner let’s the option expire.
The payoff is zero in this case:

f Long put
T = 0

– The payoff of the long put option is therefore given by

f Long put
T =

{
0, ST > K

K − ST , ST < K
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– We can now construct the payoff diagram for the long put option. From
this we can see the linear relationship in the payoff diagram from the short
forward contract. In a payoff diagram, a short forward contract and a long
put option have the same linear relationship if ST < K Graphically, this
becomes:
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Figure 1.11: Payoff diagram of a long put option.

–

• Finally, consider the short put option.

– Again the payoff diagram for the short party is the mirror image of the
payoff diagram for the long party.
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Figure 1.12: The payoff diagrams for the short put option and the long put option.
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• We now summarize our finding graphically and mathematically.

f long call
t = max (ST −K, 0)

f long put
t = max (K − ST , 0)

Where:

K = The strike price.

T = The maturity date.

S = The spot price.

f Position
T = The value of contract at maturity T .
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Figure 1.13: Payoff diagrams for options contracts. Left: the long call and the short
call option. Right: the long put and the short put options.
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1.23 Profit diagrams

• When acquiring an option, you have to pay an option premium. To acquire
a profit diagram you must subtract the option premium from the value of the
option at a certain point in time.

• A profit diagram for a derivative is nothing else than a payoff diagram that
undergo a vertical shift reflecting the premium that is paid and other potential
costs or benefits. Mathematically, this becomes:

Profit Long
T = f Long

T − premium

Profit Short
T = f Short

T + premium

• The option holder (long) will break even when the long regains his paid premium
i.e. the short loses his received premium.

• However, we neglected the time value of money. The payoff is realized at maturity
date and the premium is paid when purchasing the option. In order to correct
this, you have to compound or discount one of the cash-values.

0 50 100 150 200−
10

0
−

50
0

50
10

0

Spot price of underlying at maturity

P
ay

of
f/P

ro
fit

Long call option payoff
Long call option profit

Figure 1.14: Profit and payoff diagram of the long call option compared.
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1.24 Applications of derivative products

• Derivatives can be used in different applications. We will discuss arbitrage,
speculation and hedging with derivative products.

• The first application we consider is hedging. Consider the example where a US
company will receive 100 million Euro in March. We investigate what options
this firm has to hedge their exposure to the Dollar/Euro exchange rate.

– The firm could opt to leave its exposure open by doing nothing. The firm
then has an exposure and bears a risk. Leaving a position open, leaves open
a risk. The firm gains if the USD decreases in value and loses if the USD
increases in value.

– The firm could also opt to use future contracts to hedge its exposure. It
could do this by entering a short position in Euro futures. The underlying
of such a Euro future contract is a set amount in Euro. The future price for
the underlying is expressed in USD. By entering the short forward contract,
we fix a price in USD for the underlying. We now consider the different
possible outcomes.

1. First, suppose the EUR increases in value vis à vis the USD. This means
that the spot price at maturity of one Euro is higher than the spot price
at the inception of the forward contract. In that case, the payoff of the
option contract will be negative.

SEuro
t0

< SEuro
T

f Short fut.
T < 0

2. Next, suppose the EUR decreases in value vis Ã vis the USD. This
means that the spot price at maturity of one Euro is lower than the
spot price at the inception of the forward contract. In that case, the
payoff of the option contract will be positive.

SEuro
t0

> SEuro
T

f Short fut.
T > 0

– The firm could also opt to use option contracts to hedge its exposure. The
firm would want to buy put options i.e. it would take a long position in
put options. The underlying is a set amount in Euro. The price for the
underlying is expressed in USD. The firm therefore has an option to sell the
underlying. We fix a price in USD for the underlying. We now consider the
different possible outcomes.
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1. First, suppose the EUR increases in value vis à vis the USD. In that
case, the firm will not exercise the option but rather sell the underlying
spot.

SEuro
t0

< SEuro
T

fEUR long put
T = 0

2. Next, suppose the EUR decreases in value vis Ã vis the USD. In this
case, the firm will exercise the option and realize a positive payoff.

SEuro
t0

> SEuro
T

fEUR long put
T > 0

– Observe that one could also:

1. Enter a long position in dollar futures.

2. Enter a long position in call dollar options.

• The next application is speculation. Speculation is all about creating an exposure
to a certain risk, with regards to a certain event. Consider the example where a
US company believes the JPY will appreciate vis-à-vis the USD over the next
three months. We investigate what options this firm has to open an exposure to
the JPY.

– The firm could choose to buy the JPY in the spot market. In this case there
is no leverage.

– The firm could also opt to take a long position in futures on the JPY . In
this case there is leverage.

– Finally, the firm could choose to enter a position of long call options on the
JPY.

24



1.25 Structured products

• Structured products are portfolios of existing financial products (including deriva-
tives). The goal is to create new payoff profiles by combining these different
financial products. Examples of structured products are:

– Packages of forwards and options, combined into one product.

– Bonds with embedded options.

• Consider the following example where we try to deconstruct a structured product,
based on the payoff profile of this structured product.

– The payoff profile is given by the following set of equations:

f StrProd
T =

{
F − St if F > ST

m · (F − ST ) otherwise

Where:

F = the contracted forward price.

ST = the spot price at maturity.

m = a multiplier, indicating leverage.

– If ST < F , the payoff profile is a 45◦ line which corresponds to the payoff
profile as an ordinary short forward. If ST > F , the slope of the payoff
profile is steeper as the slope of an ordinary short forward; for every dollar
the underlying increases, the payoff decreases with more than one dollar i.e.
m > 1. Mathematically:

f StrProd
T =

{
F − ST when ST < F

F −m · ST when ST > F

– We now investigate how we could construct such a product. This is discussed
in more detail in courses such as financial engineering. We now try to
construct a target forward with m=2.

1. We use a short forward; the payoff profile is given by:

f Short forward
T = F − ST

2. We use a short call; the payoff profile is given by:

f Short call
T =

{
0 when F > ST

F − ST when F < ST
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3. We combine these two products:

f Target forward
T = f Short call

T +f Short forward
T =

{
F − ST when F > ST

2 · (F − ST ) when F < ST

Now there is a $2 decrease of the payoff for every increase of the spot
price at maturity ST with $1.

• We now consider an example for what is called a range forward or flexible forward.

– Suppose the payoff profile of this range forward is given by the set of
equations below. The payoff follows ST , whenever you are between two
boundaries. When you exit those two boundaries, you reach a built-in cap,
floor. Deconstructing this payoff profile is a nice exercise.

f Range fw.
T =


$1.57/GBP when ST < 1.57

ST when 1.57 < ST < 1.64

$1, 64 when 1.64 < ST
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2 Fixed Income Analytics

In this chapter, we take a look at some fixed income financial instruments. We start
by introducing the different types of interest rates. We then take a look at the term
structure of interest rates. This chapter corresponds with chapter 5 of the book.

Fixed income analytics is all about the time value of money:

• We calculate the future value of a cashflow sum by compounding that cashflow.

• We calculate the present value of a future cashflow by discounting that cashflow.

There are some conventions that are used when discounting or compounding. For
instance:

• Day count basis conventions.

• Conventions on how interest on interest is treated i.e. capitalization.
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2.1 Day count conventions

Interest rates on a loan or investment will typically be expressed as a fraction of a
duration of time. This duration of time is called the interest base period N .

Typically, interest rates are expressed as a fraction of a year. In that case, n equals
the number of interest-bearing days and where N equals the number of days in a year.
The term τ of the loan or investment can then be expressed in the following manner:

τ =
n

N

• The numerator n is equal to the number of days between the start date t0 and
the maturity date T . It is also called the number of interest-bearing days.

n = T − t0

• The denominator N equals the number of days in a year.

There are multiple ways in which the value of the numerator n and the denominator N
can be determined. These are so-called day-count conventions. There are 6 commonly
used day-count conventions:

•
ACT

ACT

•
ACT

365

•
ACT

360

•
30

360

•
30E

360

•
30E+

360

ACT denotes actual. In this case, we use the actual number of days when computing
the term loan. When ACT is used in the numerator, we count the exact number of
days between the start date and the maturity date. This interest type convention is
denoted with the term exact time. When ACT is used in the denominator, we use
the average number of days of each year to which the loan applies. This interest type
convention is denoted with the term exact interest.

When 30 is used in the numerator, we speak of approximate time. In this case, if
the day of the month of the start date is equal to 31, we change it to 30. Furthermore,
the day of the month of the maturity date is changed:

• 30/360: if day of month of maturity date is equal to 31 and day of month of start
date is equal to 30 or 31, then we assume day of month of maturity date is equal
to 30.

• 30E/360: if day of month of maturity date is equal to 31, then we assume day of
month of maturity date is equal to 30.

• 30E+/360: if day of month of maturity date is equal to 31, then we assume day
of month of maturity date is equal to 1 of the next month.

When 365 is used in the denominator, we assume that every year consists of 365 days.
In contrast, when 360 is used in the denominator, we assume that every year consists
of 360 days. In this case, we speak of ordinary interest.
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2.2 Simple interest

Interest is added over time but only to the starting capital i.e. interest is calculated
on the starting capital. The interest I is proportional to the term τ . This means the
interest I changes at the same rate as the term τ . The interest I over a capital sum C,
outstanding during a period τ is given by:

I = Ct0 · (i · τ)

It is clear that the interest is proportional to the term τ .

2.2.1 Future value of a capital sum

At the end of a period τ , a capital sum C, outstanding at a simple interest rate i, will
have generated an interest equal to:

I = Ct0 · iτ

This interest is added to the initial capital Ct0 . The sum of both is called the accumu-
lated amount of capital or the future value of the capital sum: Mathematically:

CT = Ct0 + I

= Ct0 + Ct0 · iτ

In summary, we know that:

CT = Ct0 + I

I = Ct0 · (iτ)

From these expressions, it must follow that:

CT = Ct0 · (1 + iτ)
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2.2.2 Bankers discount

• The present value of a capital sum or a cash flow is calculated by discounting
that cash flow.

• A discount or banker’s discount E is defined as a reduction that is allowed when
one pays of their debt before the end of the term, before maturity. It is a reduction
of the redeemable sum.

The discount rate d is defined as a percentage that is applied to the terminal value of a
loan/investment. Mathematically:

E = CT · dτ

Suppose:

CT = the terminal value of the debt.

E = the discount.

Ct0 = the discounted value of the debt.

τ = the term of the debt.

It must be true that:
E = CT − Ct0

The discount is thus the difference between the nominal value CT and the discounted
value Ct0 of the debt.

2.2.3 Present value of a capital sum

To calculate the present value of a cash flow, one needs to discount that cash flow. The
discounted value of a capital sum Ct0 is given by:

Ct0 = CT − E

= CT − CT · dτ
= CT · (1− dτ)
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2.2.4 Equivalent interest rate

We are interested in the interest rate that corresponds with a given discount rate. To
derive this interest rate, we equate the interest that is generated over the whole term I
to the discount over the whole term. Mathematically, this becomes:

I = E

Ct0 · i · τ = CT · d · τ

We also know that:

CT =
Ct0

1− dτ

An expression for computing the present value of a cash flow can ve easily derived from
the expression for computing the future value of a cash flow.

Ct0 =
CT

1 + rτ

CT = Ct0 · (1 + rτ)

Combining the statements above we acquire the following equation for the interest rate
that corresponds with a given discount rate:

Ct0 · i · τ =
Ct0

1− dτ
· dτ

i =
d

1− dτ

31



2.3 Intermediate payments

In some cases, debtors have the right to make early repayments. If so, the outstanding
debt and the interest due have to be recalculated. This recalculation can be done using
two approaches.

• Merchant rules. All cash flows (positive and negative) are compounded up to
maturity T . These cash flows are then summed at maturity T . This sum reflects
the remaining outstanding capital amount that will need to be repaid.

• Declining balance rules. In this case, every cash flow is split up in an amortization
amount and an interest amount. We can then recalculate the outstanding capital
amount.

2.4 Compound interest

The case where interest is paid periodically and added to the capital sum is denoted
with the term compound interest. The underlying assumption is that the accrued
interest is reinvested at the same interest rate until maturity. Id est, interest payments
accrue interest themselves until maturity.

2.4.1 Future value of a capital sum

Suppose interest capitalization takes place every next period (for instance, every year).
I.e. interest is added to the capital sum at the end of each period.

During the first period, interest is earned only on the capital sum. We can therefore
calculate the future value of the capital sum after one period using the formulas for
simple interest. The accumulated capital after one period Ct1 is equal to:

Ct1 = Ct0 · (1 + i)

During the next period, interest is received not only on the capital sum but also on
the interest that was earned in the first period. Id est the interest is calculated on the
accumulated capital after period one. The accumulated capital after two periods is
therefore equal to:

Ct2 = Ct1 · (1 + i)

We substitute the equation for Ct1 into the equation for Ct2 :

Ct2 = Ct0 · (1 + i) · (1 + i)

= Ct0 · (1 + i)2
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We can easily generalize the above statement for n periods instead of two periods:

Ctn = Ct0 · (1 + i)n

The factor (1 + i) is sometimes called the accumulation factor. We may think of the
accumulation factor as a growth factor because (1 + i) > 1. The future value of the
capital sum CT grows exponentially with the number of periods n. Id est CT is an
increasing power function of the number of periods n.

2.4.2 Present value of a capital sum

We can also easily derive a formula for the present value of a capital sum Ct0 . We
already know the formula for the future value of a capital sum:

Ctn = Ct0 · (1 + i)n

We can therefore easily derive an expression for Ct0 . It is clear that the present value
of the capital sum CtO decreases exponentially with the number of years.

Ct0 =
Ctn

(1 + i)n

= Ctn · (1 + i)n

2.4.3 The discount rate and the equivalent interest rate

We are also interested in the interest rate that corresponds with a given discount rate.
As is the case for simple interest, the discount rate d is applied to the terminal value of
a loan or investment.

Cto = Ctn · (1− d)n

It must follow that:

Ctn

Ct0

=
Ct0 · (1 + i)n

Ct0

= (1 + i)n

We can easily deduce that, in the case of compound interest, the discount factor is
defined as (1− d)n:

Ct0

Ctn

=
Ctn · (1− d)n

Ctn

=
1

(1 + d)n
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So the following must also hold:

1 + i =
1

1− d
− 1− d

1− d

=
d

1− d

Or equivalently:

1 + i =
1

1− d

1− d =
1

1 + i

d =
−1

1 + i
+ 1

=
−1 + 1 + i

1 + i

=
i

1 + i

The equation above gives us the interest rate that corresponds with a given discount
rate, in the case of periodic compounding. Note that the resulting expression is the
same as for the case case of simple interest.
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2.4.4 Total amount of interest earned

We can also easily calculate the total amount of interest that is earned during n years
In by subtracting the starting capital Ct0 from the accumulated amount of capital after
n years Ctn . Mathematically:

In = Ctn − Ct0

= Ct0 · (1 + i)n −Kt0

= Ct0 ·
[
(1 + i)n − 1

]

2.4.5 Nominal and effective interest rates

Interest compoundings will typically be expressed as a fraction of a duration of time.
This duration of time is called the compounding base period M .

In the case of effective interest rates, the compounding base period M is equal to the
interest base period N . That is, the compounding frequency or the number of interest
compoundings per interest base period is equal to one. Mathematically:

N = interest base period

M = compounding base period
N

M
= m = compounding frequency

For example, the effective annual interest rate, annual equivalent rate (AER) is the
annual interest rate on a loan or financial product where compound interest is payable
annually in arrears.

Suppose interest is being capitalized at the end of every period equal to 1
m

th
of the

interest base period N . The corresponding nominal interest rate is denoted by i(m).

In order to use our previously derived formulas for compounding and discounting, we
will need to align the interest base period N with the compounding base period M .
Mathematically:

i = i(m)/m

To calculate the future value the future value of a capital sum Ctn ; we will need to take
into account the total number of capitalizations at the effective interest rate i. We can
then calculate the total number of capitalization periods as m · n.

In conclusion, there are (m · n) capitalizations, each at interest rate i(m)
m

.
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After n years, the future value of a capital sum Ctn will equal:

Ctn = Ct0 ·
[
1 +

i(m)

m

]m·n

With:

m = the number of capitalizations per base period.

n = the number of base periods.

i(m) = the nominal interest rate with compounding frequency m.

An expression for the effective interest rate can be derived by equating the future values
of the capital sum Ct0 for the nominal and the effective interest rate:

Ct0 · (1 + i)n = Ct0 ·
[
1 +

i(m)

m

]m·n

From this, it follows that:

i = (1 +
i(m)

m
)m − 1

Conversely, we can deduce a nominal interest rate i(m), from an effective interest rate
i:

i(m) = m ·
[
(1 + i)

1
m − 1

]
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2.5 Continuous interest

Suppose we let the number of interest capitalizations increase to infinity: m → ∞.
This means that the interest is added to the outstanding capital in a continuous matter.
The interest trickles into the capital sum continuously. The interest rate per period
i(m)
m

will go to zero. This is because every time period is infinitesimally small and
the amount added to the capital is negligibly small. The nominal continuous interest
i(m = ∞) = lim

m→∞
i(m) will however be finite. We call i∞ = δ the force of interest or

the nominal rate of interest per unit time, momentarily convertible.

2.5.1 Future value of a capital sum

We derive the formula for the future value of a capital sum CT by solving the limit
case for the future value for compound interest.

CT = lim
m→∞

[
Ct0 · (1 +

i(m)

m
)mτ

]
ln(CT ) = lim

m→∞

[
ln{Ct0 · (1 +

i(m)

m
)mτ}

]

First, consider taking the logarithm of both sides of the equation.

ln{Ct0(1 +
i(m)

m
)mτ} = ln{Ct0}+ ln{(1 + i(m)

m
)mτ}

= ln{Ct0}+mτ · ln{1 + i(m)

m
}∣∣∣ ln{1 + h} ≈ h for small values of h

= ln{Ct0}+mτ · i(m)

m
= ln{Ct0}+ τ · i(m)

Then, take the limit of both sides of the equation for m → ∞.

ln{CT} = lim
m→∞

[
ln{Ct0}+ τ · i(m)

]
= ln(Ct0) + τδ

CT = Ct0 · eδτ
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2.5.2 Present value of a capital sum

Using the formula for the future value of a capital sum, we can easily deduce the
present value of a capital sum in the case of continuous interest:

CT = Ct0 · eδτ

Becomes:
Ct0 = CT · e−τδ

2.5.3 The discount rate and the equivalent interest rate
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2.6 Annuities

2.6.1 Definition

An annuity is a series of future payments, for which the time interval ∆t between those
points (also called “the period”) is constant. In general a period covers one year, hence
the name ”annuity.”

2.6.2 The multiplicative nature of money

We deposit a sum of money with present value PV in a bank that pays interest at the
rate r. After one year the deposited sum of money has grown to PV (1 + r). We call
this amount the future value FV . We may write this future value as:

FV = PV · (1 + r)

We May also think of (1+r) as a growth factor. Continuing this process for another
year, compounding the interest annually, the future value FV will become:

FV = [PV · (1 + r)] · (1 + r) = PV · (1 + r)2

If we continue this process, compounding the sum for a total of n years, the future
value becomes:

FV = PV · (1 + r)n

Principle of consistency

The principle of consistency states that in a consistent market, the proceeds of an
investment strategy where the investor invests an amount A over a time span between
t0 and t2 should be equivalent to an investment strategy where the investor invests
an amount A over a time span between t0 and t1 and an amount A over a time span
between t1 and t2. The course of action taken by the investor should not influence the
proceeds of the investment.

A(t0, t2) = A(t0, t1) · A(t1, t2)
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2.6.3 Value additivity

The value of an asset V0 equals the present value of all future cashflows CFk that the
owner of the asset expects to receive during the lifetime of the asset:

V0 =
CF1

(1 + r)1
+

CF2

(1 + r)2
+ ...+

CFT

(1 + r)T

With:

V0 = the value of the asset at time 0

CFk = the cashflow in year t

r = the appropriate discount rate

2.6.4 Types of annuities

We already stated that annuity is a series op payments where the time between the
payments is constant. However there exist different types of annuities. These annuities
differ with regard to the cashflow amounts, the maturity and the timing of the cash
flows. We now list different types of annuities:

• Level annuity: the annuity amount is constant:

CF1 = CF2 = ... = CFn

• Varying annuity: payments are not all of the same size:

CF1 ̸= CF2 ̸= ... = CFn

• Temporary annuity or annuity certain: the number of payments is finite:

n ∈ R

• Perpetuity: the number of payments is infinite:

n = ∞

• Deferred annuity: the annuity is delayed with m periods: the first payment takes
place in the period τm.

• Annuity due, annuity payable in advance: the payments are made at the beginning
of each period.

• Ordinary annuity or annuity payable in arrears: the payments are made at end
of each period.
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2.6.5 General case annuity

We consider the most general case of an annuity where there are n payments:

At0 , At1 , At2 , ..., Atj , ..., Atn

Present value

The present value is given by:

V0 = At0 + At1 ·
1

(1 + i)1
+ ...+ Atj ·

1

(1 + i)j
+ ...+ Atn · 1

(1 + i)n

=
n∑

k=1

(
Atk ·

1

(1 + i)k

)

Future value

The future value is given by:

Vn = At0 · (1 + i)n + At1 · (1 + i)n−1 + ...+ Atj · (1 + i)n−j + ...+ Atn · (1 + i)0

=
n∑

k=0

(Atk · (1 + i)n−k)

= (1 + i)n ·
n∑

k=0

(Atk · (1 + i)−k)

Or equivalently:

= (1 + i)n ·
n∑

k=0

(Atk · (
1

1 + i
)k)

= (1 + i)n · V0
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2.6.6 Level annuities certain

A level annuity certain had the following characteristics:

• Payments are all of the same amount.

• The number of payments is finite.

• The annuity starts immediately.

We make use of the following symbols in our derivations:

• a: the present value of a level ordinary annuity of $1

• s: the future value of a level ordinary annuity of $1

• ä: the present value of a level annuity due of $1

• s̈: the future value of a level annuity due of $1

We also make use of the following notation for discount factors:

vj =
1

(1 + i)j

And of the following notation for the compound factors:

uj = (1 + i)j

The term of the annuity is indicated by a subscript on the right, placed under a right
angle. For example, the present value of an n-year; immediate; level; ordinary annuity,
of $1 is indicated by:

an

The deferral period is indicated by a subscript on the left, followed by a vertical bar.
For example, the present value of an n-year; m-year-deferred; level; ordinary annuity,
of 1$ is indicated by:

m|an
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Present value

We will now calculate the present value and the future value of a level ordinary annuity

A =

{
A0 = 0

A1 = A2 = ... = An = $1

Suppose v is the discount factor and u is the capitalization factor so that:

vj =
1

(1 + i)j

uj = (1 + i)j

For the present value, we find that:

an =
n∑

j=1

vj · 1

= v + v1 + v2 + ...+ vn

=
(1− v)

(1− v)
· v + v1 + v2 + ...+ vn

=
(v1 + v2 + ...+ vn − v2 − ...− vn+1)

(1− v)

=
(v − vn+1)

(1− v)

=
v(1− vn)

v( 1
v
− 1)

=
1− vn

u− 1

=
1− vn

i
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Future value

For the future value, we find that:

sn =
n∑

j=1

1 · un−j

= un ·
n∑

j=1

u−j

= un ·
n∑

j=1

vj

= un · an

= un · (1− vn

i
)

=
un − 1

i
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2.6.7 Deferred annuity

Consider a level, n-year, m-year deferred ordinary annuity certain, of $1 The current
value of the annuity at time t = m is equal to:

an

Therefore, the current value at time t0, the present value of the deferred annuity m|an
is given by:

m|an = vm · an

vm · 1− vm

i

=
vm − vm+n

i

For a deferred perpetuity, the present value becomes:

m|a∞ =
vm

i

The future value of a deferred annuity is equal to that of the corresponding immediate
annuity:

m|sn = sn

2.6.8 Annuity due

A annuity due is equivalent to an ordinary annuity whose starting point has been
advanced by one period. That is, a one year advanced ordinary annuity.

The present value is given by:

än = −1|an

= v−1 · an

= u · an

In more general terms:

m|än = u · m|an

= vm−1 · an

For the future value of an annuity due, the following statements are true:

s̈n = u · sn

and

m|s̈n = u · sn
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2.6.9 Continuously payable annuities
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2.6.10 Varying annuities
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2.6.11 Uncertain annuities
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2.7 Bonds

We now take a look at bonds. A bond is a fixed income instrument that represents
a loan made by an investor to a borrower (typically corporate or governmental). A
bond could be thought of as an I.O.U. between the lender and borrower that includes
the details of the loan and its payments. Bonds are used by companies, municipalities,
states, and sovereign governments to finance projects and operations. Owners of bonds
are debtholders, or creditors, of the issuer.

2.7.1 The theoretical price of a bond

We want to determine the price of a bond. The theoretical price of a bond corresponds
to the sum of the discounted cashflows of the bond. First, we consider zero coupon
bonds or for short zero bonds. A zero-coupon bond is a debt security that does not
pay interest but instead trades at a deep discount, rendering a profit at maturity, when
the bond is redeemed for its full face value. To determine the theoretical price of a zero
bond we have to discount the nominal value of the bond over the time to maturity T .
Mathematically:

In the case of simple interest, the price of the bond is given by:

V0 =
CFT

1 + r
· d
B

=
CFT

1 + r
· τ

In the case of compound interest, the price of the bond is given by:

V0 =
CFT

(1 + r)τ

In the case of periodically compounded interest, the price of the bond is given by:

V0 =
CFT

(1 + r
m
)τ

In the case of continuous interest, the price of the bond is given by:

V0 = CFT · e−rτ

Or, in general:
V0 = CFT · u

With:

• t0: the starting date.

• T : the maturity date.

• τ : the time to maturity.

• CFT : the cashflow at maturity.
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• m: the number of discount periods in a year.

• r: the appropriate discount rate.

• d
B
: the number of days divided by the number of days in a year.

• u: a discount factor.

2.7.2 Market quotations

Bonds can be quoted in several ways. A quotation can be either a yield or a price.
Given a yield we can always determine a corresponding price.

Quotation on a discount basis

Bonds can be quoted using a discount basis. The yield quotation on a discount basis is
defined as the face value of the bond minus the price of the bond as a percentage of
the face value of the bond, discounted over the maturity of the bond using a certain
discount basis. The yield is mathematically defined as:

γd =
F − P

F
· B
n

With

• F : the face value of the bond.

• P : the price of the bond.

• B: the discount basis.

• n: the number of calendar days to maturity.

• (F − P ): the net cashflow at maturity.

• B
n
: a discount factor.

• γd: the yield calculated using a certain discount basis B.

It follows that the price of the bond is given by:

P = F · (1− 1 · γd
B

)

Money market basis

Bonds can also be quoted on a money market basis. The yield on a money market
basis γm, is defined as the face value of the bond minus the price of the bond, as a
percentage of the price of the bond, discounted over the maturity of the bond using a
certain discount basis. The yield is mathematically defined as:

γm =
F − P

P
· B
n
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It follows that the price of the bond is given by:

P =
F

1 + n·γm
B

The zero coupon yield to maturity

To define the Yield To Maturity we need to know about the Internal Rate of Return
or IRR for short. The IRR is the discount rate for which the Net Present Value or
NPV for short of the bond is equal to zero. The Net Present Value or the NPV for
short is the sum of all discounted future cashflows of a bond. NPV-calculations rely
on a discount rate that is available a priori. In a mathematical expression, the IRR is
defined as: ∑

t

CF t

(IRR)t
= 0

The yield to maturity or Y TM for short is the total return anticipated on a bond if
the bond is held until it matures. The yield to maturity is expressed as an annual rate.
In other words, it is the internal rate of return (IRR) of an investment in a bond if
the investor holds the bond until maturity, with all payments made as scheduled and
reinvested at the same rate.

Example: An investor receives $100 in one year for an investment of $97.50. Calculate
the yield per annum with annual, sem-annual and continuous compounding.

• Annual compounding

FV = PV · (1 + γac)
τ

γac = (
FV

PV
)

1
τ − 1

= (
100

97.50
)

1
0.25 − 1

= 0.10657674

• Semi-annual compounding

FV = PV · (1 + γsac
m

)τm

γsac = m ∗ (FV

PV
)

1
τ∗m − 1

= 2 ∗ ( 100

97.50
)

1
0.25∗2 − 1

= 0.103879027
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• Continuous compounding

FV = PV · eγccτ

γcc = log(
FV

PV
) ∗ 1

τ

= log(
100

97.50
) ∗ 1

0.25
= 0.101271232

The spot rate

The spot rate or the zero rate of an investment with maturity T , is the interest rate
one earns on an equivalent investment that provides a payoff only at maturity T . We
denote the spot rate until time T as:

sT

2.7.3 The term structure of interest rates

The term structure of interest rates is the relationship between interest rates or bond
yields and different terms or maturities. Id est a term structure of interest rates, depicts
the interest rates of similar bonds at different maturities. When graphed, the term
structure of interest rates is known as a yield curve. The term structure thus gives
the interest rate an investor expects on an investment that only provides a single cash
stream on maturity, for different maturities.

When calculating the theoretical price of a bond we need to take into account the term
structure of interest rates. Often, a single interest rate is used when discounting the
cashflows of a bond or some other financial instrument. However, each cashflow should
in theory be discounted using the zero rate for the maturity of that cashflow. This is
what we will be doing in the future.

Figure 2.1: An example of a term structure of interest rates

54



Figure 2.2: A term structure of interest rates can boast different shapes

• Example:

– Given the previous term structure, we can calculate the theoretical price
of a two year bond with a face value of $100 providing a coupon of 6%
semi-annually. We do this by discounting every cash stream against the
corresponding zero rate:

V0 = 3 ∗ e−0.05∗0.5 + 3 ∗ e−0.058∗1.0 + 3 ∗ e−0.06∗1.5 + 103 ∗ e−0.068∗2.0

= 98.39

2.7.4 Spot rates and forward rates

• A spot rate St1 is an interest rate for an investment with maturity t1 that starts
today at t0.

• A forward rate ft0,t1→t2
is an interest rate for an investment with maturity T that

starts at some point in time in the future t1. A forward rate is thus an interest
rate that can be contracted now, but that is applicable to a future time period.

• Both spot rates and forward rates and forward rates concern investments with
one single payoff at maturity. Id est spot rates and forward rates are yields on
zero coupon bonds.
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Computing the forward rate

Forward rates can be computed from spot interest rates through a process called
bootstrapping. We consider the following example:

Figure 2.3: Future and forward rates

In the first figure we fix an interest rate at t0 for the first period and simultaneously
fix an interest rate for the second period. In the second example we fix an interest rate
at t0 for the two periods combined. The interest that is paid in both situations must
be equal. Mathematically, this becomes:

Interest(Period 1) + Interest(Period 2) = Interest(Period 1 + Period 2)

Expresses mathematically, this becomes:

A · e(1−0)·st0,t0→t1 · e(2−0)·ft0,t1→t2 = A · e(2−0)·st0,t0→t2

We can rearrange the equation:

ft0,t1→t2 =
st0,t0→t2 · (2− 0)− st0,t0→t1 · (1− 0)

2− 1

We can generalize and simplify this expression:

f0,t→T =
T · sT − t · st

T − t

With:

• T : the maturity that matches with the forward rate.

• t: the start date that matches with the forward rate; or the maturity that matches
with the spot rate.

• ST : the spot rate that matches with maturity T .

• st: the spot rate that matches with maturity t.
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We now look at the same example, but we now use annual compounding; we can easily
see that:

A · (1 + st0,t0→t1 , )
(1−0) · (1 + ft0,t1→t2)

(2−1) = A · (1 + st0,t0→t2)
(2−0)

We can rearrange the equation:

ft0,t1→t2 =
2−1

√
(1 + st0,t0→t2)

(2−0)

(1 + st0,t0→t1)
(1−0)

− 1

We can generalize this expression:

ft0,t→T = T−t

√
(1 + sT )T

(1 + st)t

With:

• T : the maturity that matches with the forward rate.

• t: the start date that matches with the forward rate; or the maturity that matches
with the spot rate.

• ST : the spot rate that matches with maturity T .

• st: the spot rate that matches with maturity t.
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Computing the spot rate

Naturally, we can also compute the spot rate for a certain maturity T, starting from
the ’immediate spot rate’ and the subsequent forward rates.

We will again start with the case for continuous interest. We already saw that:

A · e(1−0)·st0,t0→t1 · e(2−0)·ft0,t1→t2 = A · e(2−0)·st0,t0→t2

From this we can easily find the following expression for the spot rate st0,t0→t2 :

st0,t0→t2 =
st0,t0→t1 + ft0,t1→t2

2

We can also see that for the case of three consecutive periods the following statement
holds:

A · e(1−0)·st0,t0→t1 · e(2−0)·ft0,t1→t2 · e(3−2)·ft0,t2→t3 = A · e(3−0)·st0,t0→t3

Again, we find the expression for the spot rate s0,0→3:

st0,t0→t3 =
st0,t0→t1 + ft0,t1→t2 + ft0,t2→t3

3

Again, we can generalize and simplify the expression above. In general, the spot rate is
the average of the short term spot rate and the consecutive forward rates:

sn =
1

n
· (s1 + ft0,t1→t2 + ft0,t2→t3 + ...+ ft0,tn−1→tn)

Exercise

Figure 2.4: Compute the missing forward and spot rates.

Figure 2.5: Solution.
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We rewrite the equation that expresses the relation between the forward and the spot
rate. Doing so will allow us to solve the exercise.

f0,t→T =
T · sT − t · st

T − t

=
T · sT − t · st − t · sT + t · sT

T − t

= sT · (T − t

T − t
) + (sT − st) · (

t

T − t
)

= sT + (sT − st) · (
t

T − t
)

Key takeaways

• A spot rate is a contracted price for a transaction that will start immediately.

• A forward rate is a contracted price for a transaction that will start at an agreed
upon date in the future.

• The spot rate typically is used as the starting point for negotiating the forward
rate.

Forward discount factors

We will now derive a formula for the forward discount factor. In general, a discount
factor is the inverse of the capitalization factor:

dfT0,t→T = e−1·(T−t)·f0,t→T

We also know that:

ft0,t→T =
T · sT − t · st

T − t

We substitute this expression into the first equation

dft0,t→T = e−1·(T−t)·T ·sT−t·st
T−t

= est·t−sT ·T

=
e−sT ·T

e−st·T

=
dfT
dft

The forward discount factor that applies to the period [t, T ] is the discount factor for
the period [0, T ] divided by the discount factor for the period [0, t].
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We now want to check if the expression above is also valid in case of periodic com-
pounding. We already know that:

dfT
dft

=
1

(1+sT )T

1
(1+st)

t

dft0,t→T = 1
(1+f0,t→T )(T−t)

If the proposed expression is valid, it must hold that:

1

(1 + ft0,t→T )(T−t)
=

dfT
dft

=

1
(1+sT )T

1
(1+st)t

=
(1 + st)

t

(1 + sT )T

(1 + f0,t→T )
(T−t) =

(1 + sT )
T

(1 + st)t

f0,t→T = T−t

√
(1 + sT )T

(1 + st)t
− 1

This is the expression we already found for the future rate in the case of periodic
compounding, thus we showed the expression from which we started is also valid in the
case of periodic compounding.

Computing the forward rate from the forward discount factor

We now want to compute the forward rate, starting from the forward discount factor.
We start with the case of continuous compounding. We already knew that:

dft0,t→T = e−(T−t)·f0,t→T

By taking the logarithm of both sides of the equation, we arrive at:

ln(dft0,t→T ) = −(T − t) · ft0,t→T

We rearrange the expression:

ft0,t→T =
−ln(dft0,t→T )

T − t

Or:

ft0,t→T =
−1

T − t
· ln(dfT

dft
)
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The instantaneous forward rate

We will now compute the instantaneous forward rate. This is a limit case of the forward
rate. We defined the forward rate as:

ft0,t→T = sT + (sT − st) · (
t

T − t
)

We take the limit, where T approaches t, of both sides of the equation:

lim
T→t

(
ft0,t→T

)
= lim

T→t

(
sT + (sT − st) · (

t

T − t
)

)
We get the following result:

lim
T→t

(
ft0,t→T

)
= sT +

ds

dt
· t
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Sensitivity of the forward rate

We are interested in the change of the forward rate with regards to the spot rate.

Figure 2.6: Sensitivity of the term curve.

Suppose, that at time 2 the spot rate is 5%; and that at time 2.5 the spot rate is 5.2%;
we can easily calculate the discount factors:

df2 = e−0.05·2 = 0.904837418

df2.5 = e−0.052·2.5 = 0.878095431

Suppose the spot rate is 1% higher at time 2 and 1% higher at time 2.5:

s2 = 0.05 · (1.01) = 5.05%

s2.5 = 0.052 · (1.01) = 5.252%

We can recalculate the discount factors for the higher spot rates:

df2 = e−0.0505·2 = 0.903933033

df2.5 = e−0.0552·2.5 = 0.871098692

We can calculate the forward rate for the case where s2 = 5% and s2.5 = 5.2%:

f0,t→T =
−1

T − t
· ln(dfT

dft
)

f0,2→2.5 =
−1

2.5− 2
· ln(0.8781

0.9048
)

f0,2→2.5 = 0.06

We can also calculate the forward rate for the case where s2 = 5.05% and s2.5 = 5.252%:

f0,t→T =
−1

T − t
· ln(dfT

dft
)

f0,2→2.5 =
−1

2.5− 2
· ln(0.8770

0.9048
)

f0,2→2.5 = 0.0624
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A percentual change of 1% in the spot rate at time 2 and at time 2.5 leads to a change
in the forward rate of:

%− change =
0.0624

0.06
− 1 = 4%

2.7.5 Coupon bonds

We will now take a look at coupon bonds. Coupon bonds are bonds that provide
periodic cashflows or coupons to the investor.

Pricing a coupon bond

A coupon bond offers cashflows at different pints in time. To price a coupon bond
we need to discount and sum these cashflows. To discount a cashflow one needs an
interest rate. Remember that we have to use different interest rate when discounting
cashflows with different maturities. As stated before, the relationship between the zero
rate of an investment and the time to maturity of that investment is given by the term
structure of interest rates.

As stated before, we determine the theoretical price of a coupon bond by discounting
the different cashflows the coupon bond provides throughout its lifetime. For the case
of continuous compounding, the price of a coupon bond is given by:

P0 =
T∑
t=1

(
CFt · e−st·t

)
For the case of periodic compounding, this price is given by:

P0 =
T∑
t=1

( CFT

(1 + st
m
)t·m

)
We just multiply every cashflow with a discount factor which is the inverse of the
corresponding capitalization factor and sum all these cashflows.

Example

We want to determine the price of a coupon bond, starting from the following term
structure.

Figure 2.7: Term structure of a bond
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This term structure gives the spot rate of similar zero bonds with different maturities.
We can use the term structure to calculate the present value of cashflows with different
maturities.

A coupon bond is analogous with a portfolio of:

• Several zero bonds that each have a cashflow equal to the coupon.

• A zero bond that has a cashflow of the nominal value of the coupon bond.

The theoretical price of a two-year bond, providing a 6% coupon semi-annually is equal
to:

P0 = 3 · e−0.05·0.5 + 3 · e−0.058·1 + 3 · e−0.064·1.5 + 3 · e−0.068∗2 = $98.39

Pricing a risky coupon bond

We now consider a risky coupon bond id est a bond where the interest rate is subject
to risk. This means the future cashflows are not certain. We want to determine the
price of such a bond. The theoretical price of a risky coupon bond is given by:

PAA
0 =

T∑
t=1

CFT

(1 + st + CSAA
t )t

With:

• CSAA
t : the credit spread at moment t

• PAA
0 : the price of the risky coupon bond at t0

Computing spot rates for coupon bonds

To price a coupon bond we need the term structure of interest rates. This means we
need the spot rates for different maturities. Using a method called bootstrapping we
can construct a zero-coupon-bond term structure.

When considering a zero bond, determining the zero rate is easy. All we need to do is
express the equation for the price of a zero bond in terms of the interest rate sT we
use to discount the nominal value of the bond:

Pt0 = PT · e−sT ∗T

sT =
1

T
· ln(PT

Pt0

)

However,if we want to determine the zero rate of a coupon bond, we have to take the
coupons with the different maturities into account. We will have to discount these
coupons using the zero rate that corresponds to the maturity of these coupons.

One can obtain the zero rates for the maturities of the different coupons by looking at:

• Zero bonds with the same maturity

• Coupon bonds with the same maturity, for which we already know the zero rates
for the maturities of the different coupons.
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Constructing a term structure of interest rates is therefore a gradual process where we
use other bonds that have a maturity that corresponds to the maturity of one of the
coupons.

Example

We want to price a coupon bond. First, we construct a term structure of interest rates
for the maturities that correspond with the maturities of the different coupons of the
bond. We do this by looking at other bonds with maturities that correspond to the
coupons of the cashflows of our bond.

The example is as follows: we consider the following sample of coupon bonds. A coupon
is paid every six months (Ãf the bond includes a coupon)

Figure 2.8: The sample of coupon bonds.

In the first place, we determine the zero rate for a three month maturity. In this case,
determining the zero rate is easy because we are given a zero-coupon bond with a
maturity of three months. The zero rate for a maturity of three months can thus be
derived in the following manner:

PT = Pt0 · esT ∗τ

100 = 97.5 · esT ∗τ

100 = 97.5 · esT ·0.25

ln(
100

97.5
) = sT · 0.25

4 · 0.025 = sT

s(0.25) = 0.1013

In the same way, we can determine the zero rate for a maturity of six months:

100 = 94.9 · esT ∗τ

100 = 94.9 · esT ·0.50

s(0.5) = 0.1047

65



The zero rate for a maturity of one year is given by:

100 = 90 · esT ·τ

100 = 90 · esT ·1.0

s(1) = 0.1054

The zero rate for a maturity of one and a half year is somewhat more difficult to
determine. We are given a coupon bond with a maturity of one and a half year.
To determine the zero rate we will need to discount the different coupons using the
corresponding zero rate. The coupons are granted every six months. Luckily we already
determined the zero rates for maturities of six and twelve months above. The zero rate
for a maturity of eighteen months can be determined in the following manner:

P0 =
T∑
t=1

(
CFt · e−st·t

)
96 = 4 · e−s(0.5)·0.5 + 4 · e−s(1)·1 + (100 + 4) · e−s(1.5)·1.5

96 = 4 · e−0.10469·0.5 + 4 · e−0.10536·1 + (100 + 4) · e−s(1.5)·1.5

96 = 3.769 + 3.6000 + 104 · e−s(1.5)·1.5

96− 7.3960 = 104 · e−s(1.5)·1.5

ln(0.85196) = −s(1.5) · 1.5
−0.1602

1.5
= −s(1.5)

s(1.5) = 0.1068

We used the zero rates for bonds with maturities of six months and one year to discount
the coupons of this bond. This allowed us to also determine the zero rate for this bond.
This process is called bootstrapping.

The zero rate for a maturity of two years is determined in the same way:

P0 =
T∑
t=1

(
CFt · e−st·t

)
101.6 = 6 ∗ e−s(0.5)·0.5 + 6 · e−s(1)·1 + 6 · e−s(1.5)·1.5 + 106 · e−s(2)·2

101.6 = 6 · e−0.10469·0.5 + 6 · e−0.10536∗1 + 6 · e−0.1068(1.5)·1.5 + 106 · e−s(2)·2

ln(
85.3941

106
) = −s(2) · 2

s2 = 0.1080
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Using these spot rates, we can plot a term structure also known as a yield curve:

Figure 2.9: The bootstrapped term structure.

67



Splines

A spline is a function that knits piecewise functions together in an way that ensures
continuity of the function, of its slope and of the slope of the slope.

• The piecewise functions used can have various forms (e.g. quadratics, cubics,
exponentials,...)

• We need to chose the number of knots and their location arbitrarily

• More knots implies greater accuracy but also a greater computational burden

• Rule of tumb:
√
n (McCullouch) or 1

3
(Fisher)

Figure 2.10: Three piecewise functions and a corresponding spline

We will now try to span the term structure (the yield curve) with five cubic equations
with some yet unknown parameters.

The spot rate of a zero bond with maturity t is given by the following five equations:

st =



a1 + b1t+ c1t
2 + d1t

3 when 0 < t ≤ 0.5

a2 + b2(t− 0.5) + c2(t− 0.5)2 + d2(t− 0.5)3 when 0.5 < t ≤ 1

a3 + b1(t− 1) + c3(t− 1)2 + d3(t− 1)3 when 1 < t ≤ 2

a4 + b1(t− 2) + c4(t− 2)2 + d4(t− 2)3 when 2 < t ≤ 5

a5 + b1(t− 5) + c5(t− 5)2 + d5(t− 5)3 when 5 < t ≤ 10
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We impose that the different equations for st are equal at the knots i.e. the zero rates
have to be equal for maturities where two piecewise functions meet. Mathematically,
we impose the following constraints:

a1 + b1t+ c1t
2 + d1t

3 = a2 + b2(t− 0.5) + c2(t− 0.5)2 + d2(t− 0.5)3 at t = 0.5

a2 + b2(t− 0.5) + c2(t− 0.5)2 + d2(t− 0.5)3 = a3 + b1(t− 1) + c3(t− 1)2 + d3(t− 1)3 at t = 1

a3 + b1(t− 1) + c3(t− 1)2 + d3(t− 1)3 = a4 + b1(t− 2) + c4(t− 2)2 + d4(t− 2)3 at t = 2

a4 + b1(t− 2) + c4(t− 2)2 + d4(t− 2)3 = a5 + b1(t− 5) + c5(t− 5)2 + d5(t− 5)3 at t = 5

Evaluating these constraints at the can derive the following constraint for the different
parameters:

a2 = a1 +
1

2
b1 +

1

4
c1 +

1

8
d1

a3 = a2 +
1

2
b2 +

1

4
c2 +

1

8
d2

a4 = a3 + b3 + c3 + d3

a5 = a4 + 3b4 + 9c4 + 27d4

Taking the first derivative and evaluating at the intersections gives us the following
constraints for the parameters, after rearranging the equations: gives us the following
constraints:

b2 = b1 + c1 +
3

4
d1

b3 = b2 + c2 +
3

4
d2

b4 = b3 + 2c3 + 3d3

Taking the second order derivative of the constraint, evaluating at each intersection
and rearranging the equation gives us the following constraints:

c2 = c1+ 3
2
d1

c3 = c2 +
3

2
d2

c4 = c3 + 3d3

c5 = c4 + 9d4

b5 = b4 + 6c4 + 27d4

We can then calculate the value of each parameter, taking into account the different
constraints. The result is shown by the figure on the next page.
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Figure 2.11: The fitted cubic spline versus the bootstrapped spot rates.
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Bond yields

Bonds can be quoted using different yield. In this section we will define and discuss
different possible yields for bonds.

• The current yield

– The current yield is defined as:

Current Rate =
Annual Coupon

Current Price

– Consider the following example. The current yield for a 15 − year, 7%
coupon bond with a par value of $100 with a price of $76.94 is given by:

Current Rate =
Annual Coupon

Current Price
=

7

76.94
= 9.1%

– The current yield has a number of drawbacks. It does not take into account
the time value of money and it breaks down in the case of zero bonds.

• The bond yield

– The bond yield γ is the discount rate that makes the present value of the
cashflows equal to the market price of the bond. The bond yield is also
known as the Internal Rate of Return or the Yield To Maturity or YTM for
short. The bond yield satisfies the following equation:

Pt0 =
T∑
t=1

CFt

(1 + γsa
m
)t·m

– Consider the following example. Given the term structure below, determine
the yield to maturity.

Figure 2.12: Term structure

First we determine the theoretical price of a two-year bond, providing a 6%
coupon semi-annualy:

P0 =
T∑
t=1

CFt · e−γc·t

P0 = 3 · e−0.050·0.5 + 3 · e−0.058·1 + 3 · e−0.064·1.5 + 103 · e−0.068·2

P0 = 98.39
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We can then determine the bond yield:

P0 =
T∑
t=1

CFt · e−γc·t

98.39 = 3 · e−γ·0.5 + 3 · e−γ·1 + 3 · e−γ·1.5 + 103 · e−γ·2

Solving the equation above manually is tricky, therefore we use numerical
methods. The goal seek function in excel comes to the rescue. The table
below gives us the term structure, cashflows and the present value of these
cashflows.

We calculated the price of the bond just before. This price is given in the
first row. The second row displays the formula by which this theoretical
price is obtained. The formula of the goal seeking function is displayed in
the lats row. This is the formula we want sol solve numerically. In this case
the cell B2 is our unknown and represents the unknown bond yield γ.

We select the cell with the formula we use for the goal seek.
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We select our target value i.e. the theoretical price of the bond.

We select the cell that represents our variable i.e. the unknown bond yield
in the formula.

Our spreadsheet program shows the result.
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• Yield for a portfolio of bonds

– There are two possible approaches to calculate the yield for a portfolio of
bonds:

∗ Taking the weighted average of the yields of every bond, based on the
market value of every bond.

∗ Calculating the Internal Rate of Return for the whole portfolio.

– We consider the following example.

Figure 2.13: Yield for a portfolio of three bonds, calculated as the weighted average of
the yields of the individual bonds.

Figure 2.14: Yield for a portfolio of three bonds, calculated as the IRR of the whole
portfolio. For each period we determine the total cashflow that the
portfolio generates. Each cashflow is the sum of all the coupons received
in that period. We find the yield by equating the present value of these
cashflows with the market value of the portfolio.
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The coupon effect

• Suppose we have a flat term structure of interest rates i.e. the spot rate is the
same for all maturities. This implies that the yield to maturity is equal to the
spot rate. Consider for example the following two bonds:

110.69 =
10

1.06
+

10

1.062
+

110

1.063

96.65 =
4

1.06
+

4

1.062
+

104

1.063

• When we have a non-flat term structure, the yield to maturity of bonds with the
same maturity depends on the height of the coupons of the bonds. Consider for
example the following bonds:

105.84 =
10

1.04
+

10

1.062
+

110

1.083
with γ = 7.745%

89.96 =
4

1.04
+

4

1.062
+

104

1.083
with γ = 7.886%

The yield to maturity of the first bond is 7.745%; the yield to maturity of the
second bond is 7.886%. A bond with a higher coupon has a lower yield to
maturity. This phenomenon is called the coupon effect. To quantify the coupon
effect for bonds with the same credit risk and the same maturity, we need to:

– Discount the cashflows of both bonds to determine their price and yield.

– Take the difference between both yields.

– This difference is the coupon effect.

Under a normal spot rate curve, a coupon bond has a lower yield than a zero-
coupon bond of equal maturity. Picking a zero-coupon bond over a coupon bond
based purely on the higher yield to maturity of the zero-coupon bond is flawed.
When we use the yield to maturity as a measure to compare bonds, we have to
compare bonds with similar coupons.
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Bond pricing in excel

• Functions:

– PRICE-function. Returns the price per $100 face value of a security that
pays periodic interest.

= PRICE(settlement,maturity, rate, yld, redemption,

frequency, [basis])

– COUPPCD-function. Returns the previous coupon date before the settle-
ment date for a coupon bond.

= COUPPCD(settlement,maturity, frenquency, [basis])

– COUPNCD-function. Returns the next coupon date after the settlement
date.

= COUPNCD(settlement,maturity, frenquency, [basis])

– COUPDAYBS-function. Returns the number of days from the beginning of
the coupon period to the settlement date.

= COUPDAY BS(settlement,maturity, frenquency, [basis])

– COUPDAYS-function. Returns the number of days in a coupon period that
includes the settlement date.

= COUPDAY S(settlement,maturity, frenquency, [basis])

– ACCRINT-function. Returns the accrued interest for a security that pays
periodic interest.

= ACCRINT (id, fd, settlement, rate, par, frequency, [basis], [calc])

– DOLLARDE-function. Converts a dollar price entered with a special no-
tation to a dollar price displayed as a decimal number. The DOLLARFR
function does the opposite conversion.

= DOLLARDE(fractionaldollar, fraction)
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• Arguments:

– Settlement. The security’s settlement date: the day afther the issue date:
the day afther the security was acquired by the buyer.

– maturity. The maturity date: the day the security expires.

– Rate The security’s annual coupon rate.

– Yld. The security’s annual yield.

– Redemption. The redemption value: the price at which the issuing
company may choose to repurchase a security before its maturity date per
$100 face value.

– Frequency. The number of coupon payments per year.

– Id. The issue date of the security.

– Fd. The first interest date of security.

– Par. The par value of security.

– Basis. The day count basis used.

– Calc. The calculation method.

– Fractional dollar. The dollar component in special fractional notation.

– Fraction: The denominator in the fractional unit. 8 = 1/8, 16 = 1/16, 32 =
1/32, etc.

• Remark. Dates have to entered using the date function.
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• Consider the following example. We are given:

– The settlement date

– The issue date

– The maturity date

– The face value

– The coupon rate

– The coupon frequency

– The day count

We can then determine:

– The next coupon date i.e. the coupon date that first follows the settlement
date:

Next coupon date = COUPNCD

– The last coupon date i.e. the coupon date that first precedes the settlement
date:

Last coupon date = COUPPCD

– The number of days accrued:

Number of days accrued = Next coupon date− Settlement date

= COUPDAY BS

– The number of days between the last and the next coupon date:

Number of days between = Next coupon date− Last coupon date

= COUPDAY S

– The accrued interest:

Accrued interest =
Number of days accrued

Number of days between
∗ Coupon rate

Frequency
∗ Face V alue

= ACCRINT
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Figure 2.15: Example of bond pricing in excel.
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Figure 2.16: Example of bond pricing in excel.
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Par bonds and non-par bonds

• Par bonds. A par bond refers to a bond that currently trades at its face value.
A par bond comes with a coupon rate that is identical to its yield to maturity.
Mathematically:

Price = Face V alue

C = F ∗ γ
c = γ

We can easily proof that the bond trades at its face value:

Pt0 = C ·
[1− 1

(1+γ)T

γ

]
+

F

(1 + γ)T

= F · γ ·
[1− 1

(1+γ)T

γ

]
+

F

(1 + γ)T

= F ·
[
1− 1

(1 + γ)T
+

F

(1 + γ)T

= F

As we see: a bond that comes with a coupon rate that is identical to the market
interest rate, is always a par bond.

• Non-par bonds. Here, we make the distinction between:

1. Premium bonds. These are bonds that sell at a premium with regards to their
face value and where the coupon rate is greater than the yield to maturity.
The premium will be lost over the lifetime of the bond. Mathematically:

P > F and c > γ

2. Discount bonds. These are bonds that sell at a discount with regards to their
face value and where the coupon rate is smaller than the yield to maturity.
The discount is earned during the lifetime of the bond. Mathematically:

P < F and c < γ
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• We can illustrate how the market price of a premium bond and a discount bond
evolve over their lifetimes graphically:

Figure 2.17: Evolution of market values of a premium bond (blue) and a discount bond
(orange).

We can see that the price of the bond evolves towards the face value of the bond.
We call this effect the pull to par.

• We can therefore decompose price changes in bonds into two factors:

– Changes in time to maturity id est the pull to par effect.

– Changes in yield: the market effect id est changes in the price of a bond
due to changes in the demand or the supply for the bond.
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Sources of a bond’s return

• The return of a bond can be decomposed into different factors. These factors are:

– Periodic coupon payments.

– Income from the reinvestment of the coupons that are received.

– Capital gains or losses as the bond matures, is called or is sold.

• Different measurements for the bonds return take one or more of these factors
into account. Some of these measurements are:

• The coupon rate c which does not provide us with sensible information:

c =
C

F

• The current yield CYt which only takes the periodic coupons into account:

CYt =
C

Vt

• The capital gains rate CGt which gives the percentage change in value over one
period, ignoring the coupon:

CGt =
Vt+1 − Vt

Vt

• The total return Rt which is the sum of the current yield and the capital gain

Rt = CYt + CGt

• The yield to maturity which takes all factors into account. However it is only a
promised” yield. Id est the yield to maturity will only be realized if:

– The bond is held to maturity.

– The coupons are reinvested at the yield to maturity.
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The price-yield relationship

• We can illustrate the relationship between the price and the yield to maturity of
a bond graphically.

Figure 2.18: Relationship between the yield to maturity and the price of a bond. A
higher price corresponds to a lower yield to maturity.

• The relationship between the price and the yield to maturity for two bonds with
different coupons.

Figure 2.19: Relationship between the yield to maturity and the price for two bonds
with different coupons. A higher coupon bond has a higher yield to
maturity when the prices are equal. A higher coupon bond has a higher
price, when the yield to maturity of both bonds is equal.
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• The relationship between the price and the yield to maturity for two bonds where
the coupons are reinvested at different yields.

Figure 2.20: Reinvesting the coupons at a higher yield grants a higher price. The
difference becomes smaller as maturity closes in. A bond where the
coupons can be reinvested at a higher rate, has a YTM that is less
sensitive to price changes of the bond.

• The relationship between the price and the yield to maturity for two bonds with
a different time to maturity.

Figure 2.21: A bond with a long time to maturity has a yield that is more sensitive to
price changes than an equal bond with a small time to maturity.
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Price sensitivity

• Recall the following relationship for a bond:

Pt0 =
T∑
t=1

CF t

(1 + γ)t

We can split up the equation into two different parts:

1. The sum of the present value of each coupon.

2. The present value of the nominal value or the face value of the bond.

The equation then becomes:

Pt0 =
T∑
t=1

(
Ct

(1 + γ)t
) +

F

(1 + γ)T∣∣∣∣ n−1∑
k=0

a · rk = a · 1− rn

1− r

= C ·
[1− 1

(1+γ)T

γ

]
+

F

(1 + γ)T

• Hence:
P = f(c, T, γ)

With

– c: the coupon rate.

– γ: the yield to maturity.

– F: the face value.

• We can measure yield sensitivity of the price by calculating the price change if
the yield changes with one basis point. This quantity is called the dollar value of
a basis point (DVBP) or the price value of a basis point (PVBP) or the basis
point value (BPV). Mathematically:

BPV + = P (γ, c, T )− P (γ + 1bp, c, T )

BPV − = P (γ, c, T )− P (γ − 1bp, c, T )

BPV +/− = P (γ − 0.5bp, c, T )− P (γ − 0.5bp, c, T )

• A basis point is defined as:

BP = 0.01% = 0.0001 =
1

10000
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• Conclusions:

– Bond prices and yields are inversely related.

– For small changes in the yield, the price impact is symmetric.

– Negative yield shocks have a stronger impact than positive yield shocks.

– Bonds with:

∗ low coupons,

∗ long maturities,

∗ low yields,

show most price variability id est they carry most interest rate risk.
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Bond price prediction after a yield shock

• We want to predict the expected bond price after a yield shock.

• A basis point value or BPV denotes the change in the price of a bond given a
basis point change in the yield of the bond. Given this definition, the following
must hold:

Pnew = Pold −BPV ·∆γ

∆P = −BPV ·∆γ

If we set ∆γ = 1 and divide both sides of the equation by Pold, we get the following
expression:

Pnew − Pold

Pold

= −BPV

Pold

The ratio BPV
P

gives the negative percentual change in price for a 1bp shock in the
yield γ.

We can illustrate the relationship graphically:

Figure 2.22: An approximation based on the BPV of how the price changes with the
yield to maturity.
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The price-yield relationship formalized

• The duration of a financial asset that consists of fixed cashflows, such as a bond,
is the weighted average of the times until those fixed cashflows are received.

• The Macaulay duration is defined as the weighted average maturity of cashflows,
in which the time of receipt of each payment is weighted by the present value of
that payment:

Dmac =

∑T
t=1 t · PV (Ct)∑T
t=1 PV (Ct)

• The modified duration is defined as the the Macaulay duration after discounting
for one compounding period:

Dmod =
Dmac

1 + γ
m

• We are interested in how the price of a bond changes when the yield of that bond
changes. The infinitesimal change in the value of a mathematical function can be
estimated by taking the first derivative of that function. We know that:

P =
T∑
t=1

CFt

(1 + γ)t

We can take the first derivative of the price with regards to the yield:

dP

dγ
= − 1

1 + γ

[ 1 · CF1

(1 + γ)1
+

2 · CF2

(1 + γ)2
+ ...+

T · CFT

(1 + γ)T

]
If we rearrange the equation, we get a relationship between dP and dγ:

dP = − 1

1 + γ

[ 1 · CF1

(1 + γ)1
+

2 · CF2

(1 + γ)2
+ ...+

T · CFT

(1 + γ)T

]
· dγ

The absolute change in the price of the bond equals the negative of the dollar
duration times the change in the yield to maturity.
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• But what about relative changes? We know that:

dP = − 1

1 + γ

[ 1 · CF1

(1 + γ)1
+

2 · CF2

(1 + γ)2
+ ...+

T · CFT

(1 + γ)T

]
· dγ

It must follow that:

dP

P
= − 1

1 + γ

[ 1 · CF1

(1 + γ)1
+

2 · CF2

(1 + γ)2
+ ...+

T · CFT

(1 + γ)T

]
· dγ · 1

P

dP

P
= − 1

1 + γ

[( CF1

(1+γ)1

P

)
· 1 +

( CF2

(1+γ)2

P

)
· 2 + ...+

( CFT

(1+γ)T

P

)
· T

]
· dγ

dP

P
= − 1

1 + γ
· [Dac

mac] · dγ

• We can also derive this relationship for the case of periodic compounding:

P =
m·T∑
t=1

CFt

(1 + γ
m
)t

d

dγ

[ CFt

(1 + γ
m
)−t

]
=

d

dγ

[
CFt · (1 +

γ

m
)
]
= CFt · −t · (1 + γ

m
)−t−1 · 1

m
+ 0

=
CFt

(1 + γ
m
)t

· 1

m
· −t · 1

1 + γ
m

dP

dγ
= − 1

m
· 1

1 + γ
2

[ 1 · CF1

(1 + γ
m
)1

+
2 · CF2

(1 + γ
m
)2

+ ...+
mT · CFmT

(1 + γ
m
)mT

]
dP

P
= − 1

m
· 1

1 + γ
2

[ 1 · CF1

(1 + γ
m
)1

+
2 · CF2

(1 + γ
m
)2

+ ...+
mT · CFmT

(1 + γ
m
)mT

]
· 1
P

· dγ

dP

P
= − 1

1 + γ
m

[( CF1

(1+ γ
m
)1

P

)
· 0.5 +

( CF2

(1+ γ
m
)2

P

)
· 1 + ...+

( CF2T

(1+ γ
m
)2T

P

)]
· dγ

dP

P
= − 1

1 + γ
m

[
D(sac)

mac

]
dγ
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• We can also derive this relationship for the case of continuous compounding:

P =
T∑
t=1

CFt · e−t·γ

dP

dγ
= −

T∑
t=1

t · CFt · e−t·γ

dP

P
=

[
−

T∑
t=1

t ∗ CFt · e−t·γ
]
· 1
P

· dγ

dP

P
= −

[(CF1 · e−1·γ

P

)
· 1 +

(CF2 · e−2·γ

P

)
· 2 + ...+

(CFT · e−T ·γ

P

)
· T

]
· dγ

dP

P
= −[D(cc)]dγ
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Approximating the price-yield relation with a Taylor-expansion

• First order expansion A Taylor expansion of the first order is given by:

f(x0 +∆x) = f(x0) +
df

dx0

∆x+ ...

If we apply this formula to the relationship between the price P and the yield γ
P = f(γ), we get:

Pnew = f(γ +∆γ) = P0 + [−Dmod · P0]∆γ + ...

Pnew ≈ P0 + [−D$]∆γ

• Second order expansion A Taylor expansion of the second order is given by:

f(x0 +∆x) = f(x0) +
df

dx0

∆x+
1

2!

d2f

dx2
0

∆x2 + ...

If we apply this formula to the relationship between the price P and the yield γ:
P = f(γ), we get:

Pnew = f(γ +∆γ) = P0 + [−Dmod · P0]∆γ +
1

2
· [CVX · P0] ·∆γ2 + ...

Pnew ≈ P0 − [D$]∆γ +
1

2
· CVX$∆γ2

With:
CVX$ = CVX · P0
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Calculating the duration in Excel

Example:

Figure 2.23: Example of calculating the duration in Excel

Duration of a portfolio

The duration of a portfolio is the weighted average of the duration of the individual
assets.

The duration of a perpetual

The modified duration of a perpetual equals the reciprocal of the yield:

P =
c · 100

γ
dp

dγ
= −c · 100

γ2

dp

dγ
· 1
P

= −c · 100
γ2

· 1
P

dP

P
= −1

γ
dγ
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3 Forward contracts

3.1 Introduction

A forward contract is an agreement concluded between two counterparties in the OTC
market in which they agree to buy or sell an underlying asset, at a certain point in
time in the future, at a predetermined price.

There are two parties involved in a forward contract:

• The long party. The long party has the obligation to buy the underlying at the
maturity of the forward contract at the contracted delivery price. The long party
benefits when the price of the underlying increases.

• The short party. The short party has the obligation to sell the underlying at
the maturity of the forward contract at the contracted delivery price. The short
party benefits when the price of the underlying decreases.

The forward price is the delivery price for which the contract is of no value for both
parties at the inception of the forward contract. The forward price is thus the arbitrage-
free delivery price. Arbitrage is not possible when the delivery price is equal to the
forward price.

Throughout this chapter we will use the following symbols:

• Delivery price: DP

• Maturity data: T

• Spot price at time t: St

• Payoff at maturity: ST

• Forward price: F
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3.2 Payoff at maturity

At maturity, the long pays the contracted delivery price DP and receives the underlying.
The value of the underlying at maturity is the spot price of the underlying at that
point in time sT . The long can realize an immediate positive cashflow by selling the
underlying spot. In that case, he receives a positive cashflow of magnitude ST The
payoff at maturity for the long is thus given by:

f long
T = ST −DP

The short receives the contracted delivery price DP when selling the underlying.
However, the value of the underlying is equal to the spot price at that point in time
ST . The payoff at maturity for the short is therefore equal to:

f short
T = DP − ST

3.3 Determining the forward price

3.3.1 Introductory example

• Suppose you go shopping for a painting. You could ask a friend to buy the
painting and conclude forward agreement at the same time.

• To finance the purchase of the painting, your friend has to take out a loan with
an interest rate r. The forward price has to reflect this financing cost. This is
done by compounding the spot price of the underlying in the forward contract
using this interest rate r:

F = St0 · (1 + r)τ

• Your friend plans to organize an exhibition where he shows your painting. This
means the underlying of the forward contract is generating income. In doing so
your friend recovers part of the financing cost. This income also has to be taken
into account into the calculation of the forward price. The income is usually
expressed in terms of a discount rate δ:

F = St0 ·
1

(1 + δ)τ

3.3.2 Generalization

In general the following equation holds true:

F = St0 ·
(1 + r)τ

(1 + δ)τ

The income that is generated by the underlying during the lifespan of the forward
contract is expressed by discounting the spot price of the underlying at the time of the
inception of the contract. The costs that are generated by the underlying during the
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lifespan of the forward contract can be expressed by compounding the spot price of
the underlying at the time of the inception of the contract. Sometimes, there are costs
associated with storing or holding an asset. These costs are called holding costs or
costs of carry. They are the costs of carrying the asset over the lifespan of the forward
contract.

3.3.3 The replicating portfolio

• A portfolio that produces the same cashflows as a financial instrument, in all
possible states of the world is called a replicating portfolio for that financial
instrument. When this is the case, the price of the replicating portfolio has to be
equal to the price of the financial instrument. If this is not the case, arbitrage
opportunities arise.

• The payoff of a derivative is determined by the value of the underlying asset.
It is therefore very likely that we can construct a replicating portfolio for most
financial derivatives. Pricing derivatives is based upon the idea of the replicating
portfolio.

3.3.4 Categories of underlying asset

Financial derivatives have a plethora of possible underlying assets. We make the
distinction between:

• Investment assets. These assets are held by a significant number of people,
solely for investment purposes. These assets are bought and sold without many
restrictions.

• Consumption assets. These assets are held primarily for consumption purposes.
There are some restrictions on buying and selling these assets.

In order to do arbitrage, one needs to be able to take long and short positions in the
underlying. Going short in a consumption asset can prove difficult. This is because
these assets have applications outside of investment and finance. For example, some
consumption assets are used in production processes. Owners of these consumption
assets might be reluctant to enter into short selling constructions.
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3.3.5 Replicating a long forward contract

• Consider a forward contract on a non-dividend-paying investment asset.

• There are no cashflows between the time of the inception of the forward contract
t0 and maturity T . There is a single cashflow at maturity T which is equal to:

f long
T = ST −DP

• To set up a replicating portfolio, one needs to replicate the cashflows of the long
forward under all possible circumstances. Setting up a replicating portfolio for a
long forward contract would involve the following steps:

– Buying the underlying asset spot at time t0. This involves a negative cashflow
equal to St0 .

– Borrowing the present value of the delivery price DP . This involves a
positive cashflow equal to PV (DP ).

– Selling the underlying asset spot at maturity T . This involves a positive
cashflow equal to ST .

– Repaying the borrowed amount plus interest. This negative involves a
cashflow equal to DP .

• The total cost of the replicating portfolio is equal to the sum of all cashflows at
time t0:

−St0 + PV (DP )

– The spot price of the underlying at time t0 of the inception of the forward
contract St0 , will evolve to the spot price of the underlying at maturity ST .

– The borrowed amount PV (DP ) will accrue to DP at maturity T .

• The payoff at maturity is equal to the sum of all cashflows at that time. The
payoff at maturity is thus given by:

f repl. port.
T = ST −DP

• We can easily see that the payoff of the replicating portfolio is equal to the payoff
of the long forward contract:

f repl. port.
T = f long fw.

T

It must therefore be true that the price of the replicating portfolio is equal to the
price of entering the long forward contract:

P repl. port. = P long fw.

We know however that a forward contract is of no value to both parties at the
inception of the contract. There is therefore no cost associated with entering into
a forward contract:

P long fw. = 0
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The following must therefore be true:

−St0 + PV (DP ) = 0

−St0 = PV (DP )

DP = St0 · (1 + r)

F = St0 · (1 + r)

The delivery price has to be equal to the future value of St0 in order for the
condition ft0 to hold. This delivery price DP = St0 is called the forward price or
the arbitrage-free delivery price F .

3.3.6 Replicating a short forward contract

• Consider a forward contract on a non-dividend-paying investment asset.

• There are no cashflows between the time of the inception of the forward contract
t0 and maturity T . There is a single cashflow at maturity T which is equal to:

f long
T = DP − ST

• To set up a replicating portfolio, one needs to replicate the cashflows of the short
forward under all possible circumstances. Setting up a replicating portfolio for a
short forward contract would involve the following steps:

– Shorting the underlying asset. This involves a positive cashflow of magnitude
St0 .

– Investing the present value of the delivery price. This involves a negative
cashflow of magnitude PV (DP ).

– Buying the underlying asset back at maturity T . This involves a negative
cashflow of magnitude ST .

– Receiving the proceeds of the investment. This involves a positive payoff
with magnitude DP .

• The total cost of the replicating portfolio is equal to the sum of all cashflows at
time t0:

St0 − PV (DP )

– The spot price of the underlying at time t0 of the inception of the forward
contract St0 , will evolve to the spot price of the underlying at maturity ST .

– The invested amount PV (DP ) will accrue to DP at maturity T .

• The payoff at maturity is equal to the sum of all cashflows at that time. The
payoff at maturity is thus given by:

f repl. port.
T = DP − ST
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• We can easily see that the payoff of the replicating portfolio is equal to the payoff
of the short forward contract:

f repl. port.
T = f short fw.

T

It must therefore be true that the price of the replicating portfolio is equal to the
price of entering the short forward contract:

P repl. port. = P short fw.

We know however that a forward contract is of no value to both parties at the
inception of the contract. There is therefore no cost associated with entering into
a forward contract:

P short fw. = 0

The following must therefore be true:

St0 − PV (DP ) = 0

St0 = PV (DP )

DP = St0 · (1 + r)

F = St0 · (1 + r)

The delivery price has to be equal to the future value of St0 in order for the
condition ft0 to hold. This delivery price DP = St0 is called the forward price or
the arbitrage-free delivery price F .

3.3.7 Intermezzo: short selling

– Short selling involves selling an asset that you do not own.

– Short selling an asset can be done trough security lending or trough a reverse
repo.

– Sometimes, a lending fee is charged to shorter.

– The shorter has to pay back any income that would be received on the
shorted assets in normal circumstances.

– The shorter has to maintain a margin account with his broker.

– Short selling is usually only possible for investment assets.

3.3.8 Summary: forward price of a non-dividend paying
investment grade asset.

– The forward price of a non-dividend paying investment grade asset is derived
by setting up a replicating portfolio and equating the price of the replicating
portfolio to the price of the forward contract. The forward price is the
arbitrage free delivery price.
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– The forward price is given by:

F = St0 · (1 + rτ)

F = St0 · (1 +
r

m
)τm

F = St0 · erτ

3.3.9 Example

• Consider a three-month forward contract on an underlying asset with a unit price
of $100. The risk-free interest rate is equal to 5% p.a. c.c.

• Determine the delivery price DP for this three-month, zero-cost forward contract.

• The forward price F in the case of continuous compounding is given by:

F = St0 · erτ

= 100 · e0.05·0.25

= 101.26

• We can easily verify this result by calculating the value of the forward contract
at time t0. The value of the forward contract ft0 is given by:

ft0 = −St + PV (DP )

= −100 + 101.26 · e−0.05·0.25

= 0

• This result agrees with our assumption that the forward is of no value at the
inception of the contract.

3.3.10 Arbitrage opportunities

We already stated that the forward price is also called the arbitrage-free delivery price.
This is because when the delivery price is out of line with the forward price DP ̸= F ,
arbitrage opportunities arise. Id est it is then possible to realize a riskless profit using
an arbitrage portfolio.

Example 1: DP > F

• Consider a forward contract with an underlying investment asset. The spot price
of this asset at the inception of the contract is equal to $40. The time to maturity
τ of the forward contract is equal to three months. The interest rate is equal to
5% p.a. c.c. The contracted delivery price is equal to $43 .
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• The forward price is given by:

F = St0 · erτ

= 40 · e0.05·0.25

= 40.50

• At t0 we undertake the following actions:

1. We borrow $40 at %5 for a period of three months. This involves a positive
cashflow of $40.

2. We buy one unit of the underlying asset spot at t0. This involves a negative
cashflow of magnitude $40.

3. We enter in a short forward contract with a time to maturity of three months.

• At maturity T we undertake the following actions:

1. We sell the underlying asset spot. This involves a positive cashflow of
magnitude $43.

2. We repay the borrowed amount plus interest equaling. This involves a
negative cashflow of magnitude $40.50.

• We realized a riskless profit equaling to:

$43− $40.50 = $2.50

Example 2: DP < F

• Consider a forward contract with an underlying investment asset. The spot price
of this asset at the inception of the contract is equal to $40. The time to maturity
τ of the forward contract is equal to three months. The interest rate is equal to
5% p.a. c.c. The contracted delivery price is equal to $39 .

• The forward price is given by:

F = St0 · erτ

= 40 · e0.05·0.25

= 40.50

• At t0 we undertake the following actions:

1. We short one unit of the underlying asset. We realize a positive cashflow of
magnitude $40.

2. We invest the proceeds of our short operation at the interest rate of 5%.

3. We enter into a long forward contract to buy the underlying asset in three
months. The delivery price is equal to $39.
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• At maturity T we undertake the following actions:

1. We buy the asset via the forward contract at the contracted delivery price.
This involves a negative cashflow of magnitude $39.

2. We close out the short position with the assets we bought via the forward
contract.

3. We receive the proceeds of the investment. This involves a positive cashflow
of magnitude $40.50.

• We realized a riskless profit equaling to:

$40.50− $39. = $1.50

Conclusion

Both types of arbitrage will force the delivery price back to the forward price.
This is the reason why the forward price is also called the arbitrage-free forward
price. The first type of arbitrage operation is called a cash-and-carry arbitrage
operation; the second type of arbitrage operation is called a reverse-cash-and-carry
arbitrage operation.
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3.3.11 Replicating portfolio’s when the underlying is a dividend-paying
asset

• It is possible that the asset that underlies a forward contract has holding costs
and/or holding benefits. Examples of holding benefits are dividends and coupons.
Examples of holding costs are storage costs and insurance costs.

• When constructing a replication portfolio, one needs to take into account these
costs and benefits. This means that the replicating portfolio also has to replicate
these additional cashflows.

The discrete dividend case

• Consider an investment asset underlying a forward contract provides a single
discrete dividend during the lifetime of the forward contract. Suppose the dividend
is certain and the magnitude is know and fixed.

• When a stock pays out a dividend, the price of that stock will fall with an
amount equal to that dividend at the time the stock starts trading ex-dividend.
Suppose St1 is the moment just before the stock starts to trade ex-dividend or
the last moment the stock traded cum-dividend. When the stock starts trading
ex-dividend at time t2, the stock price will fall to:

St2 = St1 −D

• We can express the price of the stock at time T as follows:

ST = St1 −D · er·(T−t) +∆S

The dividend is considered as a negative cashflow because the value of the
underlying is lowered by the magnitude of the dividend at ex-dividend day. A
dividend can thus be considered as a holding benefit for the short party. The
forward price is calculated by compound the spot price of the underlying St0 :

F = St0 · erτ

Because the value of the underlying will decrease during the lifetime of the
forward; the forward price as calculated above would be too high. Therefore, the
forward price needs to take into account that the value of the underlying will
decrease during the lifetime of the forward contract.

• We can write the payoff of the long forward contract as:

f long
T = ST −DP

= St0 +∆S −D · er·(T−t2) −DP

= ST −D · er·(T−t2) −DP
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• The goal is to construct a replicating portfolio for this payoff function.

• At t0 we need to undertake the following actions:

– Buy the underlying at the current spot price. This involves a negative
cashflow with a magnitude of St0 .

– Take out a loan for the present value of the dividend plus the present
value of the delivery price. This involves a positive cashflow of magnitude
PV (D) + PV (DP ).

• At maturity day T we need to undertake the following actions:

– We sell the underlying at the current spot price. This involves a positive
cashflow of magnitude ST .

– We pay back the loan. This involves a negative cashflow of magnitude
D · er·τ +DP .

• The cost of the replicating portfolio is equal to the sum of all cashflows that take
place at t0:

−St0 +D · e−r·(t2−t0) +DP · e−r·(T−t0)

• The payoff of the replicating portfolio at maturity is equal the sum of all cashflows
that take place at maturity T ::

ST −D · er·τ −DP

• We can easily see that the payoff of the replicating portfolio is equal to the
payoff of the forward contract we considered earlier. Therefore, the cost of the
replicating portfolio has to be equal to the cost of the forward contract:

P long fw. = P repl. port. = −St0 +D · e−r·(t2−t0) +DP · e−r·(T−t0)

• We know the value of a forward contract is zero at it’s inception. Therefore, the
following statement has to hold:

0 = −St0 +D · e−r·(t2−t0) +DP · e−r·(T−t0)

DP = (St0 −D · e−r·(t2−t0)) · er·(T−t0)
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Example

• Consider a zero-cost forward contract with a time to maturity of nine months,
where the spot price of the underlying asset at the time of the inception of the
contract is equal to $100. The interest rate is 5% p.a. c.c. A dividend of 5% on
the underlying asset is expected within five months.

• We are interested in the forward price of this forward contract which can be
calculated in the following manner:

DP = (St0 −D · e−r·(t2−t0)) · er·(T−t0)

= (100− 5 · e
5
12

·0.05) · e0.05·(
9
12

)

= $98.737

The multiple dividend case

• We are interested in determining the forward price of an asset with multiple
dividends.

• The basic philosophy stays the same. We discount the incoming cashflows and
subtract them from the spot price of the underlying asset. This amount is then
compounded up to maturity.

• Suppose we did not subtract the discounted incoming cashflows from the spot
price at the inception of the contract. In that case, the delivery price would be
higher. We would compound the spot price of the underlying at the inception
of the contract up to maturity. However, the underlying asset loses some of its
value throughout its lifetime. The compounded spot price of the underlying at
the time of the inception of the contract does not take this into account. The
delivery price is therefore too high because it does not accurately reflect the price
of the underlying at maturity.

• In the case of a stock, the value of that is stock is lowered when the stock starts
to trade ex-dividend with an amount equal to the value of the dividend.

• In the case of a bond, the value of that bond is lowered when a coupon is paid
out, with an amount equal to the value of that coupon.

• We can calculate the forward price, using the following equation:

F =
[
St0 −

∑
i

D
(ti−t0)
i

]
· er·τ

Example

• Consider a 9-month forward contract on a coupon-paying bond. The bond price
at the inception of the forward contract is equal to $95. Coupons are paid every
three months. The coupon rate is equal to 5%. the term structure of interest
rates is flat at 10% p.a. c.c. The face value of the bond is equal to $100.

• We are interested in the forward price of this forward contract.
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• We can calculate the forward price in a similar way to the previous examples.
In this case we have to discount multiple cashflows. The value of the bond will
drop each time a coupon is payed out. In the most simple case, the forward
price is equal to the compounded value of the spot price of the underlying at
the inception of the contract. This forward price would be too high because the
value of the coupon-paying bond decreases throughout it’s lifetime by paying
out coupons. The forward price has to take this into account. This is done by
discounting all the coupons back to the time of the inception of the contract.
The discounted coupons are then summed and subtracted from the spot price of
the bond at that time. This difference is then compounded up to the maturity of
the forward contract.

This compounded difference is equal to the forward price:

F =
[
St0 −

∑
i

D
(ti−t0)
i

]
· er·τ

=
[
95− 5 · e−0.25·0.10 − 5 · e−0.5·0.10

]
· e0.10·

9
12

= $92.02

• Suppose the quoted delivery price did not take into account the different dividends.
The delivery price would clearly be too high:

DP = St0 · er·τ

= 95 · e0.10·
9
12

= 102.40

• In that case we can easily set up an arbitrage portfolio:

– At time t0:

1. We buy the underlying spot. This involves a negative cashflow of
magnitude $95.

2. We enter in a short forward position to sell the underlying at maturity
T .

3. We enter a loan for the present value of the first dividend. This involves
a positive cashflow of magnitude $5 · e−0.25·0.10 = $4.88.

4. We enter a loan for the present value of the second dividend. This
involves a positive cashflow of magnitude $5 · e−0.5·0.10 = $4.76.

5. We enter a loan with a nominal value equal to the spot price of the
underlying asset minus the nominal values of the loan of the first and
the second dividend. This involves a positive cashflow of magnitude
$95− $4.88− $4.76 = $85.36. We can therefore finance the underlying
with the total amount of loans we entered.
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– At time t1:

1. We receive our first dividend. This involves a positive cashflow of
magnitude $5.

2. We pay back the loan with nominal value of the first dividend plus
interest. This involves a negative cashflow of magnitude $5.

– At time t2:

1. We receive our second dividend. This involves a positive cashflow of
magnitude $5.

2. We pay back the loan with nominal value of the second dividend plus
interest. This involves a negative cashflow of magnitude $5.

– At maturity T :

1. We sell the underlying asset via the forward contract. This involves a
positive cashflow of magnitude $102.40.

2. We pay back the loan with a nominal value equal to the spot price of
the underlying at t0 minus the nominal values of the loan of the first
and the second dividend plus interest. This involves a negative cashflow
of magnitude 85.36 · e0.05· 9

12 = $88.62.

3. We realized a riskless profit equal to $102.40− $88.62 = $13.78
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The continuous dividend case

• We are interested in determining the forward price of an asset that provides
income in a continuous manner.

• The basic philosophy stays the same. We discount the incoming cashflows and
subtract them from the spot price of the underlying asset. This amount is then
compounded up to maturity.

• In this case, we discount the spot price of the underlying at the time of the
inception of the contract using a dividend yield δ.

• The forward price of an asset that provides income in a continuous manner with
dividend yield δ is equal to:

F = St0 · e−δτ · erτ

= St0 · e(r−δ)·τ

Example

• Currencies are an example of assets that provide income in a continuous manner.

• Suppose the USD trades spot at eSt0 . The interest rate in the EUR is equal to
r% p.a. c.c. The interest rate on the USD is equal to δ% p.a. c.c.

• We are interested in the forward price of a τ -year, zero-cost forward contract
where the underlying is one USD.

• The USD provides continuous income in the form of an interest rate δ. When
calculating the forward price of one USD, the spot price of one USD at the time of
the inception of the forward contract needs to be reduced with the present value
of all future interest payments. We determine the forward price by compounding
this amount up to maturity. Because the spot price is expressed in EUR, we need
to use the EUR interest rate. Mathematically, this becomes:

F = St0 · e(r−δ)·τ

Forward contracts on stock indices

• It is not practical to model and track every dividend of every stock individually.
Therefore, one can interpret the stock index as a continuous dividend paying
asset. In that case, the forward price is given by:

F = St0 · ercc−δcc

• We compute δ as the average dividend yield per annum during the lifetime of the
forward contract. Mathematically this becomes:

δ =
γd1 + γd2 + ...+ γdn

n
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Summary

• If the underlying provides income in a discrete manner, the forward price is given
by:

F =
[
St0 −

∑
i

D
(ti−t0)
i

]
· er·τ

= St0 · (
1 + r

1 + δ
)τ

• If the underlying provides income in a continuous manner, the forward price is
given by:

F = St0 · er−δ

• We have made some implicit assumptions throughout this chapter, being:

– There are no transaction costs.

– There are no restrictions on short selling.

– The borrowing and the lending interest rates are the same.

If the assumptions are relaxed, we get an arbitrage-free band of delivery prices
instead of a single arbitrage-free delivery price.
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3.4 Determining the marked-to-market value of a position
in a forward contract

• To determine the value of the forward contract, at maturity T , we compare two
cashflows:

– The delivery price of the forward contract DP . This is the contracted price
at which the underlying changes hands.

– The spot price of the underlying at maturity ST .

• Now, we want to determine the value of a forward contract at any point in time.
The same logic still applies id est the value of a position in a forward contract is
still a comparison between the spot price of the underlying at that point in time
and the forward price. However, we need to take into account that we are now
comparing cashflows at different points in time. Therefore, we need to discount
the forward price to the point in time of comparison. For example, the value of a
long position in a forward contract, at time t0 is given by:

ft0 = St0 − (St0 · erτ ) · e−rτ

= St0 − St0

= 0

• The value of a position in a forward contract is thus calculated by comparing
buying spot and buying forward and aligning the cashflows that result from these
operations, in time.

• Remarks:

– A forward contract has a value of zero, when the delivery price is set to the
arbitrage-free delivery price. This is the case at the inception of the forward
contract, when the forward contract is negotiated. Mathematically:

ft0 = 0

– During the lifetime of the forward contract, a position may gain or lose
value.

– At maturity, the value of a position in the forward contract is equal to the
payoff of that position:

f long
T = ST −DP

– At maturity, the value of a position in the forward contract, is determined
by comparing the acquisition cost spot and the acquisition cost contracted
forward.
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• We look at the following example:

– Consider a forward contract with a time to maturity of six months. The
underlying is a zero-coupon bond that will mature in one year from now.
The nominal value of the bond is equal to $950. The price of the bond at
this time is equal to $930. The term structure of interest rates is flat at 6%
p.a. c.c.

– We want to determine the actual value of a long position in this forward
contract. There are two ways we can calculate the value of this position:

1. We can compare entering in a new forward contract with the old forward
contract. The forward price for the new forward contract is given by:

Fnew = St0 · erτ

= 930 · e0.5·0.06

= 958.32

We compare entering into a new forward contract with the old forward
contract:

Fnew − Fold = 958.32− 950 = $8.32

The forward price of the new contract is higher than the forward price
of the old contract. Therefore, the old forward contract has a positive
value for the long position and a negative value for the short position
in the contract. The value of the old forward contract is ±$8.32 at
maturity.

2. We can compare buying the underlying asset spot with the present value
of buying the underlying via the forward contract:

St1 − PV (F ) = 930− 950 · e−0.5·0.06

= 930− 921.92

= $8.08

The value of the old forward contract is ±$8.08 at the present point in
time.
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3.5 Determining the forward price for consumption assets

3.5.1 No-arbitrage

Pure consumption assets do not provide income and need to be stored. In some cases
the no-arbitrage principle breaks down. In that case, it is impossible to determine a
forward price.

1. Suppose F > (S + u) · erτ . In this case, the delivery price is lower than the
arbitrage-free forward price. The question ad hand is if it is possible to take
advantage of this low delivery price. We can theoretically set up an arbitrage
portfolio by:

• Taking out a loan for the amount of the spot price of the underlying asset
at t0 and the present value at t0 of the storage costs. The interest rate on
the loan is r%. This entails a positive cashflow of magnitude St0+Ut0

.

• Buying the underlying spot at t0. This entails a negative cashflow of
magnitude St0 .

• Storing the underlying asset up to maturity at cost UT .

• Going short in a forward contract.

At maturity, the following steps unfold:

• We sell the underlying via the forward contract. This entails a positive
cashflow of magnitude F .

• We repay the loan for the amount of the spot price of the underlying asset
at t0 and the present value at t0 of the storage costs plus interests. This
entails a negative cashflow of magnitude (St0 + Ut0) · erτ .

We realize a riskless profit of magnitude:

F − (St0 + Ut0) · erτ

There were no obstacles in setting up this arbitrage portfolio. Therefore, in this
case, arbitrage is possible.

2. Suppose F < (S + u) · erτ . In this case, the delivery price is higher than the
arbitrage-free forward price. The question ad hand is if it is possible to take
advantage of this high delivery price. We can theoretically set up an arbitrage
portfolio by:

• Going long in a futures contract.

• Going short in the underlying asset.

In this case, we immediately encounter a problem. This is because the underlying
asset has alternative uses. Therefore, owners might be reluctant to enter short
selling constructions. To do this kind of arbitrage, you need to get your hands on
the commodity itself. If nobody wants to lend the commodity, arbitrage is not
possible. In general, arbitrage works if the commodity is abundantly available.
However, the scarcer the commodity, the less arbitrage will be possible.
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From all of the above we must conclude that we cannot determine a forward price for
some pure consumption assets. The only relationship that still holds is given by:

F ≤ (St0 + Ut0) · erτ

Using this equation we can calculate the tension in the market of a given commodity.
The bigger the inequality, the bigger the tension.

3.5.2 The cost of carry and the convenience yield

3.5.3 Conclusion

We can conclude that the no-arbitrage principle to determine the forward price of a
certain asset does not work when:

• The asset is a non-tradable asset.

• The asset is a non-storable asset.

In these cases, we can only look at demand and supply to come up with a forward
price. It is not possible to determine a theoretical forward price.

114



4 Future contracts

4.1 Futures pricing

Futures contract are similar to forward contracts. There are however two big differences

• Future contracts have delivery options.

• Futures contracts have a marking-to-market procedure. This means futures
contracts are settled daily.

The question at hand is whether the delivery options that come with future contract
and the daily settlement have an impact on pricing.

4.1.1 Delivery options

• The party that is short in the futures contract will have the delivery options.
These Delivery options are a benefit from the point of view of the party that is
short because they grant some leeway in the delivery of the underlying assets.

• The short party finds future contracts more interesting than forward contracts.
All else being equal, there will be more sellers and less buyers in the future market
than in the forward market. Therefore, the future price will be lower than the
forward price. The futures price will thus be lower than the forward price because
of the presence of delivery options.

• The party that is long in the futures contract will have to pay a lower price in
comparison with the forward price. This is because he is uncertain about the
quality of the underlying that is going to be delivered.

• Delivery options make future contract less suitable for a long hedge. This is
because the hedge will be less precise due to the presence of delivery options.

• Exchanges try to limit the amount of delivery options in future contracts. This
in turn limits the value of these delivery options. Therefore, the discrepancy
between the forward and the future price is in practice rather small.

• On average the economical impact of choosing between different types of un-
derlying is quite small. In general, delivery options do not play an important
role.
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4.1.2 The marking-to-market procedure

• A theoretical proof exists (Cox, Ingersoll and Ross)that forward and future prices
are equal when:

– Interest rates are constant.

– Interest rates are a deterministic function of time. This condition can be
relaxed somewhat. In practice it is sufficient to assume that interest rates
are forecastable.

• Consider a futures contract with a time to maturity of τ . The future’s price
at the end of day t is denoted by Ft. The forward price, at the end of day t is
denoted by Gt. The risk-free rate on a daily basis, is denoted by δ.

• We are interested in comparing two strategies. The first strategy makes use of
the future contract. The second strategy makes use of the forward contract. Our
goal is to show that the payoff’s of both strategies, calculated at maturity are
equal to one another. If this is the case, the forward and future prices have to be
equal because one of the portfolios is based on future contract and the other one
on forward contracts.

• We first consider the future strategy.

– The future strategy comprises the following steps:

1. Investing the amount equal to the futures price Ft0 in a riskless bond
at time t0.

2. Entering in a long future position with an underlying value of eδ at time
t0.

3. Increasing the underlying value of the long future position to eiδ at the
end of day ti.

– The results of this strategy are presented in the table below:

Day 0 1 2 ... T

Futures price Ft0 Ft1 Ft2 ... FT

Position eδ e2δ e3δ ... eTδ

Gains/losses 0 (Ft1 − Ft0)e
δ (Ft2 − Ft1)e

2δ ... (FT − FT−1)e
Tδ

Result at T 0 (Ft1 − Ft0)e
Tδ (Ft2 − Ft1)e

Tδ ... (FT − FT−1)e
Tδ
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– We can calculate the value of the long future position at maturity T . This
is done by compounding all interim cashflows up to maturity and taking
the sum of these compounded cashflows. Suppose Fti − Ft(i−1)

represents
the contribution of each day i to the total value of the position at maturity
T . The value of the long future position at maturity T is then given by:

f long fut
T =

T∑
i=1

(Fti − Ft(i−1)
) · eTδ

= (FT − Ft0) · eTδ

= (ST − F ) · eTδ

– We can also calculate the value of the bond at maturity T . This is nothing
else then the initial investment in the bond F compounded up to maturity
T . Mathematically, the value of the bond at maturity is given by:

f bond
T = F · eτδ

– The value of the entire strategy consists of the value of the long position
at maturity T plus the value of the bond at maturity T . The value of the
entire strategy, at maturity T , is therefore given by:

fT = F · eTδ + (ST − F ) · eTδ

= ST · eTδ

– In summary, the initial investment in this strategy is equal to Ft0 . The
payoff at maturity of this strategy is equal to ST · eTδ.

• Next, we consider the forward strategy.

– The forward strategy comprises the following steps:

1. Investing the amount equal to the forward price Gt0 in a riskless bond
at time t0.

2. Entering in a long forward position with an underlying value of eδ at
time t0.

– The formula for the payoff of a long forward contract at maturity T is given
by:

f long fw
T = ST −Gt0

– We can also calculate the value of the bond at maturity T . This is nothing
else then the initial investment in the bond G compounded up to maturity
T . Mathematically, the value of the bond at maturity is given by:

f bond
T = G · eτδ
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– The value of the entire strategy consists of the value of the long position
at maturity T plus the value of the bond at maturity T . The value of the
entire strategy, at maturity T , is therefore given by:

fT = G · eTδ + (ST −G) · eTδ

= ST · eTδ

– In summary, the initial investment in this strategy is equal to Gt0 . The
payoff at maturity of this strategy is equal to ST · eTδ.

• We have shown that both investment strategies yield the same terminal cashflow
ST · eTδ. The investment of the first strategy amounts to FT0 while the invested
amount of the second strategy is equal to Gt0 . Since the terminal cashflows are
the same, the initial invested amount also needs to be the same. This means that
the future price needs to be equal to the forward price. Mathematically, this
becomes:

Ft0 = Gt0

• We showed that, when interest rates are constant, the forward price and the
future price are equal to one another.

• What if the CIR-assumption does not hold? Id est what happens when interest
rates move in an unpredictable manner?

– The only difference between a future contract and a forward contract is the
marking-to-market process.

– Suppose the underlying asset is positively correlated with interest rates.
When the interest rates go up, the asset price also goes up. The party
that is long in the future contract will gain when this is the case. However,
because of the higher interest rates, the long can now also invest his profits
at a higher yield. Conversely, when interest rates decline, the price of the
underlying asset will also decline. The party that is long in the futures
contract loses in this case. However, because of the lower interest rates, he
can fund his losses at a lower interest rate. In summary, the long is better
of in all possible situations. Therefore, the futures price will be higher than
the forward price in the case where interest rates are positively correlated
with the price of the asset underlying the contract.

– Suppose the underlying asset is negatively correlated with interest rates.
When the interest rates go up, the asset price goes down. The party that is
long in the future contract will lose when this is the case. Because of the
higher interest rates, the long now has to fund his losses at a higher interest
rate. Conversely, when interest rates decline, the price of the underlying
asset will rise. The party that is long in the futures contract gains in this
case. However, because of the lower interest rates, he must invest his profits
at a lower yield. In summary, the long is worse of in all possible situations.
Therefore, the futures price will be lower than the forward price in the case
where interest rates are negatively correlated with the price of the asset
underlying the contract.
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– In summary, the following statements hold:

ρ(P, r) > 0 → FFut. > FFor.

ρ(P, r) < 0 → FFut. < FFor.
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5 Hedging with forward and future
contracts

5.1 Introduction

• Hedging is defined as the reduction of uncertainty in future cashflows. If no
uncertainty is left after hedging an exposure to a certain risk, the hedge is called
a perfect hedge.

• The most important economic function of forward and future contracts is actually
hedging.

• In the first place, we are are interested in possible reasons for hedging. Id est
why would a firm want to hedge an exposure to a certain risk.

– An important question to consider is whether a firm should hedge risks away
that the shareholder can hedge away himself? If the firm hedges some risks,
it will generate costs in doing so. This will almost certainly not be to the
liking of some investors.

– Consider the following example. Nestle is a company based in Switzerland
but has many investors settled in the United States. Nestle could choose to
hedge it’s Dollar exposure. For an investor based in the USA however, the
Dollar exposure of Nestle is not a problem. On the contrary, by hedging
away it’s Dollar exposure, Nestle would create a risk for the investor based
in the USA. This is because he uses the USD as his currency of choice.

– The most compelling argument for hedging is that hedging reduces the
volatility of future cashflows. This can be important for tax-purposes. This
is because in many countries, tax rates are progressive. By reducing the
volatility of cashflows, the firm ensures its profits do not end up in the higher
tax brackets.
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5.2 The long hedge and the short hedge

We assume a positive correlation between the price of the asset underlying the forward
contract and the forward price. In that case, the two different types of hedges and
their use cases are:

1. The long hedge. This hedge is used when we want to buy an asset in the future.
The hedge allows us to reduce the uncertainty in the price of the asset. To do
this, we need to take the following steps:

• Take a long position in a forward or future contract at t0.

• Buy the asset that is being hedged spot at the maturity of the hedge T .

• Close out the forward or future contract at maturity T .

2. The short hedge. This hedge is used when we want to sell an asset in the future.
The hedge allows us to reduce the uncertainty in the price of the asset. To do
this, we need to take the following steps:

• Take a short position in a forward or future contract at t0.

• Sell the asset that is being hedged spot at the maturity of the hedge T .

• Close out the forward or future contract at maturity T .

5.3 Imperfect hedges

When hedging, it is possible that the forward price, for the original forward contract,
of the underlying of the forward contract at the maturity of the forward contract will
not be equal to the spot price at the maturity of the hedge of the asset that is being
hedged. Id est FT ̸= ST . Tere are two possible reasons for this:

1. A mismatch between the term of the forward contract and the time over which
one wants to hedge. Id est the maturity of the forward contract is not equal to
the maturity of the hedge.

2. A commodity mismatch. The asset underlying the forward contract is not exactly
the same as the asset that is being hedged. Therefore differences are possible
between the forward price at maturity T of the original forward contract and the
spot price of the asset that is being hedged at time T .

In the case of future contracts there is almost certainly a mismatch for the delivery date.
This is because futures usually have a delivery or maturity month. When the a party
enters the delivery month, he has to take delivery or make delivery. Therefore, parties
usually close out their positions before the maturity month of the futures contract. In
doing so, they do not have to make or take delivery.

We conclude that the property FT,T = ST does not hold up when hedging. In general,
the hedge will be unwound before maturity and the asset underlying the forward
contract is not exactly the same as the asset that is being hedged.
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Consider a long position in a futures contract that matures at maturity T . The hedge
is unwound at time t, which is before maturity T . At the same time t we buy the
underlying spot in the market. The price we end up paying for the underlying is
calculated by taking the sum of all cashflows:

P = −St + (Ft,T − Ft0,T )

= −Ft0,T − St + Ft,T

= −(Ft0,T + St − Ft,T )

= −(Ft0,T + bt)

We define the difference between the spot price and the futures price at time t as the
basis bt at that time. Mathematically, this becomes:

bt = St − Ft

The term basis risk refers to the risk that remains after hedging because the convergence
of the future price towards the spot price at maturity does not take place. Id est there
is some risk left because of the difference between the future price and the spot price
at maturity. The basis risk will increase if the basis strengthens. The basis risk will
decrease if the basis declines.

5.4 Optimizing the hedge

The goal is of course to create a perfect hedge. We can do this by choosing an underlying
asset that closely resembles that asset we want to hedge and by minimizing the maturity
mismatch.

The maturity mismatch originates from the fact that we want to unwind the hedge
prematurely. The future contract ends at maturity T but is unwound at time t. To
minimize the maturity mismatch, we choose the delivery month that is as close as
possible to, but later than, the end of the period over which we wish to hedge.

Furthermore, future prices during the month of the expiration of the future contract
can be erratic. This is just another reason to choose a forward contract with a longer
lifespan than the period over which we wish to hedge.
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5.4.1 Example

• Consider the following example:

– A US-corporate will receive ¥50.000.000 at the end of July. There are
future contracts available for the JPY with different maturities. All future
contract expire at the end of the month. The available maturities are March,
June, September and December. The contract size of all future contracts is
¥12.500.000. The goal is to hedge this position using future contracts.

– In general, we need to close out the future position, at the end of the period
over which we wanted to hedge. To minimize the maturity mismatch we
should choose the delivery month as close as possible to, but lather than
the end of the period over which we want to hedge. The end of July marks
the end of the hedging period. September is the closest month to July that
is later than July, for which a future contract is available. Therefore, we
choose to short four September future contracts.

– Suppose the future price on March first is equal to 0.7800 c/¥:

Ft0,T = 0.7800 c/¥

– At the end of July the future price is equal to 0.7250 c/¥:

Ft,T = 0.7250 c/¥

– At this time we need to close out the position. We therefore realize a profit
on the future position equal to:

f short fut.
t = Ft0,T − Ft,T

= 0.7800− 0.7250

= ¥0.055

– At the same time the company will receive the amount in JPY. The company
should sell these JPY spot. The spot price at that time is equal to 0.7200
c/¥.

– The goal of our hedge was to lock in the price of the JPY. With our hedge,
we ended up receiving the following price:

P = Ft0,T + bt

= 0.7200 + 0.055

= 0.7750

– Remark that in theory we cannot compute the difference between Ft0,T and
Ft,T . This is because both forward prices reflect cashflows at different point
in time. What we should do is compound the forward price of our forward
contract at time t0 to time t. However, the time gap is usually small and is
therefore often ignored.
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5.4.2 Rolling the hedge

It is possible a firm needs to hedge an exposure over a period that is longer than the
time to maturity of the available forward contracts. If this is the case, it can role over
the hedge. This is done by dividing the lifespan of the hedge into different, smaller
periods. The firm then sets up a hedge at the start of each of these periods and closes
the hedge before then end of this period to avoid the maturity month.

Example

• A company wants to set up a hedge in April of year x0 to sell 100.000 barrels of
oil in June of year x1. The spot price at time t0 is equal to $19/barrel. Future
contracts are available up to six months. The contract size of a future contract is
equal to 100 barrels. Suppose the spot price for oil in June of the next year is
equal to $16/barrel.

• To set up a hedge, the firm takes the following steps:

– The firm goes short in 100 October future contracts.

– It rolls over the October future contracts to March futures, in September.

– It rolls over the March future contracts to July futures, in February.

• Rolling over the hedge consist of closing out the existing future position and
entering a new future position at the same time. Each position is closed out in
the month before the delivery month.

• We now want to calculate the total profit or loss the firm incurred over the
lifespan of the hedge. For each future contract, we need can calculate the payoff
using the following formula:

ft = Ft − Ft0

• The future prices are given by:

Month Year Ft0 Ft ft = Ft − Ft0

October x $18.20 $17.40 $0.80

March x+ 1 $17.00 $16.50 $0.50

July x+ 1 $16.30 $15.90 $0.40

Total $1.70

• The forward contracts provide a positive cashflow of $1.70 per contract. However,
the spot price evolved from St0 = $19 to St = $17. This means the company
made a loss by postponing their purchase. This is the loss the firm would have
incurred when it would have not hedged it’s exposure. The loss amounts to:

−fT = St0 − St

= $19− $17

= $2
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• In total, the firm still incurs a loss. However, because the firm hedged it’s position,
the loss is smaller than it would have been without setting up a hedge.

• The loss is due to closing out the future positions before the maturity of the
future contract. The future price and the spot price converge at the maturity of
the contract. However, the firm has to close out is’s position before the maturity
month. In that case, the future price ft,T is not equal to the spot price St. The
payoff of the future contract at time t is equal to:

f short fut.
t = Ft,T − Ft0,T

This is also the case when the future contract is not being rolled over. However,
when rolling a hedge, the future position is closed out multiple times. Every
time the future position is closed out, there will exist a difference between the
future price and the spot price. In conclusion, the difference in the spot price over
the period that is being hedged will not be equal to the sum of the differences
between the forward price at time ti+1 and the forward price at time ti:

ST − St0 ̸=
nper∑
i=0

Fti+1
− Fti

The case without a maturity mismatch

Consider the case where:

• A future contract was available that could span the period between T and t.

• The future contract has the same maturity as the hedge, namely T .

• It is possible to close out the future contract at the maturity T of the contract.

In that case:

• The forward price at the maturity would be equal to the spot price of the
underlying at that time:

ST = FT

• The losses incurred by delaying the sale would be fully compensated by the
proceeds of the position in the future contracts:

ST − St0 = FT − St0

Metallgesellschaft AG

Consider the case of Metallgesellschaft AG. The company set up a rolling hedge with
short term future contracts. However, these future contracts have a margin requirement.
As a consequence, there were margin calls on a regular basis. This put pressure on
the cashflow of the company. The board of directors did not understand the workings
of hedging and therefore decided to close out the position. In doing so, the company
incurred a loss of $1.33 billion. This is a good example of timing problems that can
arise by hedging an exposure.
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5.4.3 Commodity mismatches

• A commodity mismatch is caused by one of two reasons:

1. Delivery options with respect to the grade of the underlying commodity.

2. Cross-hedging. This is a hedge for one commodity which is accomplished
with future contracts on another product.

• Cross-hedging is done when there are no futures on the asset that is being hedged.
The hedgers chooses a contract for which the changes in the future price are
highly correlated with the changes in the price of the commodity that is to be
hedged.

We denote the future price of the contract that is used for the hedge as FH .
The theoretical future price of a contract on the actual commodity that is being
hedged is denoted by F .

The payoff at time t, in the case of a short hedge becomes:

f short fut.
t = St + (FH

t0,T
− FH

t,T )

= St + FH
t0,T

− FH
t,T − SH

t + SH
t

= FH
t0,T

+ (SH
t − FH

t,T ) + (St − SH
t )

= FH
t0,T

+ bHt + (St − SH
t )

Notice that the third term reflects how the spot price of the underlying differs
from the spot price of the asset that is being hedged. The second term is the
basis risk on the underlying future.

• When cross hedging we need a future contract where changes in the future price
are highly correlated with changes in the price of the underlying asset. These
price changes should be correlated over the hedging horizon.
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5.4.4 The optimal hedge size

• We now ask ourselves what the optimal size of the hedge should be. Id est we
are looking for the optimal hedge ratio h or the optimal number of contracts n
times the contract size H to hedge a position of size Q. Mathematically:

h =
n ·H
Q

• A naive hedge uses a hedge ratio of one. In that case, the position has been fully
hedged. This means that the value of the whole position is sheltered from the
risk of price changes in the underlying.

• In the presence of basis risk however, it is generally not optimal to have a hedge
ratio of one. With a hedge ratio of h, the cashflows of the short hedge at time t
would become:

f short hedge
t = St + h · (Ft0,T − Ft,T )

We can easily rewrite these equations using the following notation:

∆S = St − St0

∆F = Ft,T − Ft0,T

The equation for the cashflows of the short hedge at time t become:

f short hedge
t = ∆S + St0 + h · (−∆F )

= St0 +∆S − h∆F

Hedging is about certainty; therefore, we want to reduce the volatility of the
value of the hedge. This means minimizing the variance of a change in the value
of the position of the hedger:

min
h

var(∆S − h∆F )

The variance of a change in the value of the position of the hedger is given by:

var(Change in Position) = var(∆S − h∆F )

= var(∆S) + h2 · var(∆F )− 2h · cov(∆S,∆F )

Minimizing the variance of the change in the value of the position of the hedger
corresponds to taking the first derivative with respect to h and equating it to
zero:

d var(Change in Position)

dh
= 0

2h · var(∆F )− 2 · cov(∆S,∆F ) = 0

cov(∆S,∆F )

∆F
= h∗
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This is indeed a minimum, since:

d2 (change in position)

dh2
= 2 · var(∆F )

> 0

• The optimal hedge ratio is therefore equal to:

h∗ =
cos(∆S,∆F )

var(∆F )

= ρ∆S,∆F · σ∆S

σ∆F

• The correlation between ∆S and ∆F is given by:

ρ∆S,∆F =
cov(∆S,∆F )

σ∆S · σ∆F

• We can easily see that the optimal hedge ratio depends on:

1. The correlation between the changes in the spot price and the forward price
ρ∆S,∆F .

2. The ratio of the two volatilities σ∆S

σ∆F
.

• Suppose we want to hedge an exposure to a commodity that fluctuates relatively
heavily. To do this, we use a forward contract that has relatively little price
fluctuations. Intuitively, it is easy to see that we will need more than one forward
contract to hedge the position. This is because we want to hedge large price
changes with small price changes. The ratio of the two volatilities indicates how
many contracts we need to hedge the exposure, per unit of risk.

5.4.5 Effect of the correlation on the optimal hedge size

We are interested in the impact of the correlation between the spot and the forward
price on the optimal hedge size.

• A correlation of one means that the cashflow variance can be reduced to zero. A
perfect hedge is possible.

• A correlation of zero means that whatever hedge ratio we are using, the risk will
only increase, not decrease.

• A correlation between one and zero is something in between. A perfect hedge is
not possible, however the exposure can be reduced.
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5.4.6 Remarks

• The sign of the hedge ratio will depend on the correlation.

• If the sign is positive, the long hedge will have to take a long position in a future
contract in order to offset the losses as a buyer in the spot market.

• If the sign is negative, the long hedge will have to take a short position in a
future contract to offset the losses as a buyer in the spot market.

• If the correlation is zero, the hedge ratio is also zero and hedging will only increase
the volatility of the position.
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5.4.7 Quantifying the amount of avoided uncertainty by hedging

We may want to quantify how much uncertainty is avoided by setting up a hedge. We
know that the variance in the cashflows of the position of the hedger is given by:

var(Change in Position) = var(∆S − h∆F )

= var(∆S) + h2 · var(∆F )− 2h · cov(∆S,∆F )

= var(∆S) + h2var(∆F )− 2h · ρ∆S,∆F · σ∆Sσ∆F

The cashflow variance in case of no hedging is therefore given by:

var(Change in Position | no hedging) = var(∆S)

The cashflow variance in case of an optimal hedge is equal to:

var(Change in Position | optimal hedge)

= var(∆S) + ρ∆S,∆F · σ∆S

σ∆F

2

· var(∆F )− 2(ρ∆S,∆F · σ∆S

σ∆F

) · ρ∆S,∆F · σ∆S · σ∆F

= var(∆S) · (1− ρ2)

We can now easily see, that by hedging the risk, the cashflow variance was reduced by:

var(Change in Position | no hedging)− var(Change in Position | optimal hedge)

= var(∆S)− var(∆S) · (1− ρ2)

= ρ2 · var(∆S)

5.4.8 The effectiveness of the hedge

Recall the statistical measure R-squared R2. R-squared R2 is a statistical measure that
represents the proportion of the variance for a dependent variable that’s explained by an
independent variable or variables in a regression model. Whereas correlation explains
the strength of the relationship between an independent and dependent variable, R-
squared explains to what extent the variance of one variable explains the variance of
the second variable.

Within a univariate regression, the correlation squared ρ2 is therefore equal to R2:

ρ2 = R2

We can measure the effectiveness of a hedge by measuring the proportion of the variance
that is eliminated by hedging. This is measured by R-squared R2:

R2 = ρ2 = h∗ · 2σ
2
∆F

σ2
∆S
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5.4.9 Example

• Consider a firm that will buy one million gallons of kerosene within three months.
The firm wants to hedge this position. The standard deviation of the spot price
of kerosene σ∆S is equal to 0, 032. The firm uses futures on Brent oil to hedge
this position. The standard deviation of the future price σ∆F is equal to 0.040.
The correlation between the spot price of the kerosene and the forward price of
Brent oil forward contract ρ∆S,∆F is equal to 0.80. The contract size of a future
contract is equal to 42.000 gallons. We want to calculate the optimal hedge ratio
h∗.

• The optimal hedge ratio h∗ is given by:

h∗ = ρ∆S,∆F · σ∆S

σ∆F

= 0.80 · 0.032
0.040

= 0.64

• The number of contracts needed n, to hedge the position is therefore equal to:

n = h∗ · Q
H

= 0.64 · 1.000.000
42.000

= 15.2
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5.4.10 Tailing the hedge

• We can take the effect of the daily settlements in a future contract into account.
In doing so, we improve the optimal hedge ratio.

• Ignoring the interest that is received on the margin account, the changes in the
margin account, over a hedging horizon of k days are:

(F1 − F0), (F2 − F1), ..., (Fk − Fk−1)

• The total value of the resettlements, after K days Φ, is therefore equal to:

Φ = (F1 − F0) ·Rk−1 + (F2 − F1) ·Rk−2...+ (Fk−1 − Fk−2) ·R1(Fk − Fk−1) ·R0

= δF,1 ·Rk−1 + δF,2 ·Rk−2 + ...+ δF,k−1 ·R1 + δF,k ·R0

• We assume that the changes in the future price are identically distributed with
mean δF and standard deviation σ∆F . We also assume that the resettlements are
independent of one another id est the future price changes are independent of
one another. Therefore, the following statements hold:

var(x+ y) = var(x) + var(y)

var(x · y) = var(x) · var(y) + var(x) · E(y)2 + var(y) · E(x)2

• Using these statements, we can easily calculate the variance of the total value of
the resettlements, after K days var(Φ). Mathematically, this becomes:

var(Φ) = var(δF,1 ·Rk−1) + var(δF,2 ·Rk−2) + ...+ var(δF,k−1 ·R1) + var(δF,k ·R0)

= var(δF,1) · var(Rk−1) + var(δF,1) · E(Rk−1)2 + var(Rk−1) · E(δF,1)
2

= σ2
∆F ·R2·(k−1) + σ2

∆F ·R2·(k−2) + ...+ σ2
∆F ·R2·(1) + σ2

∆F ·R2·(0)

= σ2
∆F ·R2·(k−1) + σ2

∆F ·R2·(k−2) + ...+ σ2
∆F ·R2 + σ2

∆F

• For the sake of clarity, we derive the first term. All other terms are derived in
the same manner.

var(δF,1 ·Rk−1) = var(δF,1) · var(Rk−1)

= var(∆F ) · var(Rk−1) + var(∆F ) · E(Rk−1)2 + var(Rk−1) · E(∆F )2

= σ2
∆F · 0 + σ∆F ·R2·(k−1) + 0 · δF 2

= σ2
∆F ·R2·(k−1)

• The total change in the spot price after k days is denoted by Ψ and is given by:

Ψ = δS,1 + δS,2 + ...+ δS,k
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• Assume the changes in the spot price are identically distributed with variance
σ2
δS

and mean δS. Furthermore, assume that these price changes are independent
of one another. In that case, the variance of the total change in the spot price
after k days var(Ψ) is given by:

var(Ψ) = k · σ2
δS

• The total cashflow that results from the hedged position is given by:

Ψ− h · Φ

• The variance of the total cashflow that results from the hedged position is given
by the following equation:

var(Ψ− h · Φ) = σ2
Ψ − h2 · σ2

Φ − 2h · cov(Ψ,Φ)

We now take a look at the last term, the covariance between the total change in
the spot price and the total change in the forward price cov(Ψ,Φ). In general,
the following properties apply for the covariance:

cov(X,X) = var(X)

cov(X, Y ) = cov(Y,X)

cov(aX, Y ) = a · cov(X, Y )

cov(X + c, Y ) = cov(X, Y )

cov(X + Y, Z) = cov(X,Z) + cov(Y, Z)

Or, more generally:

cov
( m∑

i=1

aiXi,
n∑

j=1

bjYj

)
=

m∑
i=1

n∑
j=1

aibj · Cov(Xi, Yj)

We can now rewrite the covariance between the total change in the spot price
and the total change in the forward price cov(Ψ,Φ):

cov(Ψ,Φ) = cov(δF,1 ·Rk−1 + δF,2 ·Rk−2 + ...+ δF,k−1 ·R1 + δF,k ·R0 ; δS,1 + δS,2 + ...+ δS,k)

= cov(δF,1 ·Rk−1, δS,1) + cov(δF,2 ·Rk−2, δS,2) + ...+ cov(δF,k, δS,k)

= Rk−1 · cov(δF,1, δS,1) +Rk−2 · cov(δF,2, δS,2) + ...+ cov(δF,k, δS,k)

= Rk−1 · cov(δF , δS) +Rk−2 · cov(δF , δS) + ...+ cov(δF , δS)

=
(
Rk−1 +Rk−2 + ...+ 1

)
· cov(δS, δF )

• Recall that the variance of the hedged position is given by:

var(Ψ− h · Φ) = σ2
Ψ − h2 · σ2

Φ − 2h · cov(Ψ,Φ)
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• To find the optimal hedge ratio, we have to minimize this expression. This is
done by taking the first derivative of the expression and equating it to zero. We
then rearrange the expression in terms of h. The optimal hedge ratio is denoted
by h∗∗ in this case. Mathematically, this becomes:

dvar(Ψ− h · Φ)
dh

=
dσ2

Ψ − h2 · σ2
Φ − 2h · cov(Ψ,Φ)

dh
0 = 2hσ2

Φ − 2 · cov(Ψ,Φ)

h∗∗ =
cov(Ψ,Φ)

σ2
Φ

• We can now find an expression the optimal hedge ratio by substituting the
equation we found for the covariance between the total change in the spot price
and the total change in the forward price cov(Ψ,Φ) and the equation we found
for the variance of the change in the forward price σ2

Φ

h∗∗ =
cov(Ψ,Φ)

σ2
Φ

=
(Rk−1 +Rk−2 + ...+ 1) · cov(δS, δF )

(R2·(k−1) +R2·(k−2) + ...+R2 + 1) · σ2
∆F

=
Rk−1 +Rk−2 + ...+ 1

R2·(k−1) +R2·(k−2) + ...+R2 + 1
· cov(δS, δF )

σ2
∆F

=
Rk−1 +Rk−2 + ...+ 1

R2·(k−1) +R2·(k−2) + ...+R2 + 1
· h∗

• We can see clearly that the previous optimal hedge ratio h∗ is multiplied by what
we call a hedge factor. The new hedge factor h∗∗ is thus not really difficult to
calculate.

• We will now explore the importance of the tail factor. We will do this by
calculating the tail factor for different hedging horizons k. To do this we use
an interest rate equal to 5% p.a. The daily gross rate R is defined as the final
value minus the initial value as a percentage of the initial value. The results are
summarized in the table below.

k Tail Factor

10 0.9994

50 0.9967

100 0.993

1000 0.93
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5.4.11 Implementation issues when hedging

• The optimal hedge ratio h∗ is defined as:

h∗ = ρ∆S,∆F · σ∆S

σ∆F

• To calculate this optimal hedge ratio h∗, we need to calculate the volatility of
both the spot price changes and the forward price changes and the correlation
between the forward price changes and the spot price changes.

• The question arises whether we need to calculate the volatilities and the correla-
tion, based on price changes over the hedging horizon. Suppose for example that
we want to calculate the optimal hedge ratio for a three month hedge. Do we then
need the three-month changes of the spot price to calculate the volatility of the
spot price changes? If we assume that the daily price changes are independent,
the answer is negative. In that case, the variance of a sum is the sum of the
variances. Mathematically, this becomes:

σ2
∆S = k · σ2

δS

ρ∆S,∆F =
cov(∆F,∆S)

σ∆S · σ∆F

=
k · cov(δS, δF )

k ·
√

σ2
δF · σ2

δF

= ρδS,δF

5.4.12 Calculating the hedging coefficient using linear regression

• We can calculate the hedging coefficient using a simple, linear regression.

– The simple linear regression model and the corresponding estimation for the
slope coefficient β are defined as:

Y = α + βx+ ϵ

β =
cov(X, Y )

var(X)

– We need to estimate the optimal hedge ratio h∗ which is given by:

h∗ =
cov(δs, δF )

var(δF )

– We should therefore perform a simple linear regression on the following
equation:

δs = α + h∗δF + ϵ
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• In the case that multiple contracts are used to set up a hedge, we need to regress
the following equation:

δs = α + h∗
F1δF1 + h∗

F2δF2 + ...+ ϵ

5.4.13 Hedging a portfolio of equities

• Cross hedging is typically used when hedging a portfolio of equities. This could
be a stock index for example.

• Suppose the spot price of an underlying stock index St0 is equal to $1000, the
interest rate r is equal to 4%, the dividend yield on the index δ is equal to 1%
and the time to maturity of the future contract τ is equal to four months. The
value of the portfolio is equal to $5.050.000. The beta of the portfolio is the
regression coefficient of the portfolio returns on the market returns and is equal
to 1.5. The contract size of a future contract on the index is equal to 250 times
the index. We want to calculate how many contracts are needed to hedge the
portfolio.

• We can easily calculate the futures price for the index:

F = St0 · e(r−δ)τ

= 1000 · e(0.04−0.01)· 4
12

= $1010.05

• We first consider a naive hedge. This would mean hedging the entire value of the
portfolio.

n =
Q

H

=
5.050.000

250 · 1010.05
= 20

• Now we want to determine the number of contracts that are needed in case of an
optimal hedge. The optimal number of contracts is given by:

n∗ = h∗ · naive hedge
= 1.5 · 20
= 30

• Suppose the spot price of the index St0 evolves to $900 within three months time.

– The forward price of the index Ft0+3m,T would then evolve to:

Ft0+3m,T = 900 · e(0.04−0.01)· 1
12

= 902.25
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– In that case, the value of the position at that time is equal to:

ft0+3m = 30 · (1010, 05− 902.25) · 250
= $808.500

• The expected return on the market is given by:

γmarket =
St0

Ft0,T

− 1 + δτ

=
900

1000
− 1 +

0.01

4
= 0.9− 1 + 0.0025

= −0.0975

• The expected return on the portfolio is given by:

γportfolio = rτ + βportfolio · (γmarket − δτ)

=
0.04

4
+ 1.5 · (−0.0975− 0.01)

= −0.1525%

• When the market goes down with 9.75%, our portfolio is expected to go down
with 15.125%. In that case , the value of our portfolio becomes:

V (portfolio) = 5.050.000 · (1− 0.1525)

= $4.286.187

• The total change in the value of the portfolio is thus given by:

∆(V (portfolio)) = 5.050.000− 4.286.187

= $5096.187
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5.4.14 Changing the beta of a portfolio

• In the previous example, we reduced the beta of the portfolio from 1.5 to zero by
shorting a number of forward contracts. In general, we can set a target value for
the beta of the portfolio. We change the value of the beta of our portfolio from
the actual beta βportfolio to a target value for the beta of the portfolio βtarget by
shorting the following number of forward contracts:

n = (βportfolio − βtarget) ·
portfolio value

value of one future contract

• Setting the target above the current beta for the portfolio results in a negative
number, which means we have to take a long position in the resulting number of
forward contract. Adding long future contracts to the portfolio would result in
an increase in the beta of our portfolio.
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6 Interest rate futures and forwards

We now take a look at interest rates derivatives. An interest rate derivative is a financial
instrument with a value that is linked to the movements of an interest rate or rates.
Examples of such derivatives are forward rate agreements, Eurodollar futures and
bond futures. First, we take a look at the concepts of forward investing and forward
borrowing. Afterwards, we examine forward rate agreements, Eurodollar futures and
bond futures.

6.1 Forward investing and forward borrowing

6.1.1 Forward investing

Suppose we want to enter into an investment that starts at a future point in time t1
and ends at maturity t2. We are committing ourselves to invest a certain amount, over
a future period. We can easily implement such an investment by taking the following
steps:

1. Investing $100 at time t0 for a period of (t2 − t0) at the current spot rate which
is 4% p.a. c.c.

2. Borrowing $100 at time t0 at the prevailing interest rate of 3% p.a. c.c.

This creates a synthetic forward investment. We can now derive the interest rate that
is received for such an investment. The interest rate over the second period rp2 is equal
to 5% p.a. c.c. This interest rate is defined as the forward rate.

100 · e0.04·2 = −100 · e0.03·1 · erp2 ·1

108.33 = 103.05 · erp2 ·1

ln(
108.33

103.05
) = rp2

rp2 = 0.05
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6.1.2 Forward borrowing

Suppose we want to enter into a loan to borrow a certain amount of money starting at
a future point in time t3 and ending at maturity t4. We can easily implement such a
loan by taking the following steps:

1. Taking out a loan of $100 for a period (t4 − t0), at an interest rate of 5% p.a. c.c.

2. Investing $100 at time t0 for a period of (t3 − t0) at an interest rate of 4.6% p.a.
c.c.

This creates a synthetic forward loan. We van now derive the interest rate that is paid
for such a loan. The interest rate over the fourth period rp4 is equal to 6.2% p.a. c.c.
This interest rate is defined as the forward rate.

100 · e0.05·4 = 100 · e0.046·3 · erp4 ·1

e0.200 = e0.138+rp4

rp4 = 0.062

6.2 The forward rate agreement

Forward rate agreements are over-the-counter contracts between parties that determine
the rate of interest to be paid on an agreed-upon date in the future. In other words, a
forward rate agreement is an agreement to exchange an interest rate commitment on
a notional amount. A forward rate agreement is therefore an interest rate derivative.
The notional amount is not exchanged, but rather a cash amount based on the interest
rate differentials and the notional value of the contract.

We now list some important properties and conventions with regard to forward rate
agreements:

• The long position in a forward rate agreement gains when the underlying interest
rate increases in value. The underlying reasoning is that the long agrees to borrow
the notional at the forward interest rate. When the spot interest rate increases,
the long will have the opportunity to borrow at a lower interest rate. When
the spot interest rate decreases, the long will be obligated to borrow at a higher
interest rate. In practice however, the notional is not exchanged.

• The short position in a forward rate agreement gains when the underlying interest
rate decreases in value. The underlying reasoning is that the short agrees to lend
the notional at the forward interest rate. When the spot interest rate increases,
the short be obligated to lend the notional at the lower, contracted interest rate.
When the spot interest rate decreases, the short will have the opportunity to
lend the money at the higher, contracted interest rate. In practice however, the
notional is not exchanged.
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• The parties that enter a forward rate agreement determine an interest rate that
has to be paid in the future. The contracted interest rate is compared to the
spot interest rate at a future point in time t1. This difference is then multiplied
with the notional amount as determined by the forward contract. This product
constitutes the payoff of the forward contract at maturity. However, in the case
of the forward rate agreement, the payoff is calculated at the maturity of the
contract t2. The payoff itself however still takes place at t1. Therefore, the payoff
is discounted over the period (t2 − t1).

• The period (t1 − t0) is called the deferment period.

• The period (t2 − t1) is called the contract period.

• The dealing date t0 is the date on which the contract rate is agreed upon. On
this date, the trade occurs. This is the time of the inception of the contract.

• The fixing date t1 is the date on which the reference rate is determined. This is
the data on which the deferment period and the contract period are decoupled.

• The settlement date is the date on which the payments take place. This is usually
the fixing date t1.

• The maturity date t2 is the date on which the forward rate agreement ends. This
is also the data on which the payoff is calculated.

• The fixing data and the settlement data are explicitly mentioned in the notation
for the forward rate contract. We typically talk about (t1 × t2) forward rate
agreement.

• The contract rate is the interest rate that is fixed at the time of the inception of
the forward contract t0.

• The reference rate is the interest rate that is determined at the fixing date t1.
The reference rate is compared to the contract rate to determine the payoff of
the forward contract.
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6.2.1 Cashflows of a forward rate agreement

We already know that the contract rate is the interest rate that is fixed at the time of
the inception of the forward contract t0. The reference rate was the the interest rate
that is determined at the fixing date t1. The contract rate is compared to the reference
rate to determine the payoff of forward contract.

However, the payoff itself is calculated at the maturity date of the forward contract
t2, id est at the end of the contract period t1. In practice the payoff is paid out at
the start the start of the contract period. The payoff as calculated at the end of the
contract period is thus discounted back to the start of the contract period.

In general, the payoff of a long position in a forward rate agreement at the time of
payoff t1 is given by:

f long fra.
t1 =

(rt1,t2 − frt0,(t1×t2)) · τ
1 + rt1,t2 · τ

Where:

• t0 is the dealing data. This is the data on which the contract rate rt0 is determined.

• t1 is the fixing data. This is the date where the reference rate rt1 is determined.

• t2 is the maturity date. This is the date on which the contract rate rt0 and the
reference rate rt1 are compared. It is therefore the date on which the payoff is
calculated before it is discounted back to the fixing date t1.

• τ is the contract period id est the period between the maturity date t2 and the
fixing date t1.

• rt1,t2 is the interest rate at time t1 for maturity t2.

• frt0,(t1×t2) is the forward rate at time t0 that applies for the period between t1
and t2.

6.2.2 The forward rate agreement as a mini-swap

• One can consider a forward rate agreement as a mini-swap. A swap is an exchange
between two parties. At the time of the inception of the swap t0 the exchanged
underlying assets are equal in value. Subsequent cashflows at fixed points in time
comprise the difference between the value of underlying borrowed at that time
minus the value of the underlying lent at that time. Suppose the underlying that
is borrowed has an interest rate r and the underlying that is lent has an interest
rate s. Both interest rates are applied to a principal Pr.

• If for example that the value of both assets is compared at time t1. The subsequent
cashflow from the swap would be equal to:

f swap
t1 = (rt1 − st1) · (t1 − t0) · Pr.

= rt1 · (t1 − t0) · Pr.− st1 · (t1 − t0) · Pr.
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• It is clear from the equation above that a swap compares two cashflows. The
principal idea behind a swap is to pay a fixed amount and receive a floating
amount on the same principal or vice versa.

6.2.3 Pricing a new forward rate agreement

The fixed rate we contract today is the forward rate. The forward rate is the rate that
is applicable to a new contract.

We can easily verify this. Suppose that at t0, we enter into a long position of a (t1 × t2)
forward contract. The payoff of the long position, at the start of the contract period is
given by the following expression:

f long fra.
t1 =

(rt1,t2 − frt0,(t1×t2) · τ) · P
1 + rt1,t2 · τ

=
P + P · rt1,t2 · τ
1 + rt1,t2 · τ

−
P + P · frt0,(t1×t2) · τ

1 + rt1,t2 · τ

= P − P ·
1 + frt0,(t1×t2) · τ

1 + rt1,t2 · τ

The payoff of the forward rate agreement at time t1 consists of two terms. The first
term is a positive cashflow and is certain at the time of the inception of the forward
contract t0. This cashflow reflects borrowing the principal amount. The second term is
uncertain at the time of the inception of the contract t0. This is because the interest
rate rt1 in determined only at time t1.

If we compound the second term up to time t2 at interest rate rt1 , the interest rate
rt1 disappears from the equation. Therefore, the second term is certain at time t0
Mathematically:

P ·
1 + frt0,(t1×t2) · τ

1 + rt1 · τ
· (1 + rt1 · τ)

= P · (1 + frt0,(t1×t2) · τ)

The present value at time t0 of the payoff that takes place at time t1 is therefore given
by:

f long fra.
t0 = P · dft1 − P · (1 + frt0,(t1×t2) · τ) · dft2

We know that at the time of the inception of the forward contract, the forward contract
is of no value to both parties. Therefore we can equate the expression above to zero
and derive an expression for the interest rate that is contracted at t0 i.e. frt0,(t1×t2).
Mathematically this becomes:

f long fra.
t0 = P · dfτ=1 − P · (1 + frt0,(t1×t2)τ) · dfτ=2

0 = P · dfτ=1 − P · (1 + frt0,(t1×t2)τ) · dfτ=2

frt0,(t1×t2) =
dfτ=1 − dfτ=2

dfτ=2

· 1
τ
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6.2.4 Example

Suppose the current 3-month Libor rate is equal to 4%. The current 6-month Libor
rate is equal to 4.5%. There are 92 days in the first three-month period and 91 days in
the second three-month period. We want to determine the forward interest rate for a
(3× 6) forward rate agreement. This means that the deferment period is equal to 3
months while the contract period is equal to 6 months.

First, we need to determine the discount factors for periods of three and six months.
Mathematically, this becomes:

dfτ=3m =
1

1 + r(t0, t0+3m) · τ

=
1

1 + 0.04 · 92
360

= 0.98988

dfτ=6m =
1

1 + r(t0, t0+6m) · τ

=
1

1 + 0.045 · 183
360

= 0.97764

We can then calculate the forward rate:

frt0,(t1×t2) =
dfτ=3m − dfτ=6m

dfτ=6m

· 1
τ

=
0.98988− 0.97764

0.97764
· 360
91

= 0.0495

Notice that we can also calculate the forward rate in a different way. The interest payed
on a loan with a maturity of six months has to be equal to a loan with a maturity of
three months combined with a loan with a maturity of three months that starts three
months from now. Mathematically, this becomes:

1 + r(t0, t0+6m) · τ = (1 + r(t0, t0+3m) · τ) · (1 + frt0,(t1×t2))

1 + 0.045 · 183
360

= (1 + 0.04 · 92

360
) · (1 + frt0,(t1×t2))

frt0,(t1×t2) = 0.0495
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6.2.5 Pricing an existing forward rate agreement

To price a forward rate agreement at a random point in time during its lifetime, we
need to compute the value of the cashflows of the contract at that point in time. This
corresponds to adjusting the discount factors.

6.2.6 Example

Suppose the current 3-month Libor rate is equal to 4%. The current 6-month Libor
rate is equal to 4.5%. There are 92 days in the first three-month period and 91 days in
the second three-month period. We want to determine the value of a (3× 6) forward
rate agreement, after one month.

The two-month Libor rate at that time is equal to 5.5%. The five-month Libor rate at
that time is equal to 6.0%.

The time until the maturity of the deferment period is equal to 61 days. The time
until the maturity of the contract period is equal to 91 days.

Calculate the discount factors:

dfτ=2m =
1

1 + r(t0, t0+2m) · τ

=
1

1 + 0.055 · 61
360

= 0.99077

dfτ=5m =
1

1 + r(t0, t0+5m) · τ

=
1

1 + 0.060 · 152
360

= 0.97529

With this we can calculate the actual forward rate:

frt0+1m,(t1×t2) =
dfτ=2m − dfτ=5m

dfτ=5m

· 1

τ3m

=
0.99077− 0.97529

0.97529
· 360
91

= 0.062791129
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We can calculate the value of the long forward rate agreement at time t2 as the difference
between the new and the old forward rate multiplied with the time span of the contract
period. We can then discount this value back to the current point in time t0 + 1m.
Mathematically, this becomes:

ft0+1m =(frt0+1m,(t1×t2) − frt0,(t1×t2)) · P · τ · dfτ=5m

= (0.062791129− 0.0496) · $25.000.000 · 91

360
· 0.97529

= 0.013191129 · $25.000.000 · 0.252777778 · 0.97529
= $81300.77

Thanks to the forward rate agreement, we have locked in the interest rate at 4.5%.
The term structure went up after one month. This means the forward rate at the time
of valuation is higher. Therefore, the long position gains in value.

6.3 Hedging with forward rate agreements

A long hedge is meant to fix an interest rate when borrowing in a future time period.
To set up a long hedge, the hedger enters a long forward rate agreement. The deferment
period is equal to the time until the party enters the loan. The contract period starts
at this time and ends at the maturity of the loan. The position in the forward rate
agreement increases in value when the interest rate increases during the deferment
period. However, this gain will be offset by entering the loan at at this higher interest
rate at the end of the deferment period. The effective borrowing cost will be fixed at
the forward rate frt0,(t1×t2).

At time t1 i.e. at the end of the deferment period, the contracted forward rate will be
compared against the spot rate rt1 at that time. The cashflow that results from the
forward rate agreement is equal to:

f fra.
t1 = (rt1,t2 − frt0,(t1×t2)) · dfτ2

This cashflow will be offset by the gain or loss in the spot market. Suppose the interest
on the loan is paid at the maturity of the loan. The total cashflow of the hedge at time
t2 then becomes:

f long hedge
t2 = (rt1,t2 − frt0,(t1×t2))− rt1,t2

= −frt0,(t1×t2)

The hedger ends up paying the contracted forward rate.

A short hedge is meant to fix an interest rate when lending in a future period. To set
up a short hedge, the hedger enters into a short forward rate agreement. The position
in the forward rate agreement increases in value when the interest rate decreases during
the deferment period. However, this gain will be offset by entering the loan at at this
lower interest rate at the end of the deferment period. The effective borrowing cost
will be fixed at the forward rate frt0,(t1×t2).
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At time t1 i.e. at the end of the deferment period, the contracted forward rate will be
compared against the spot rate rt1,t2 at that time. The cashflow that results from the
forward rate agreement is equal to:

f fra.
t1 = (frt0,(t1×t2) − rt1,t2) · dfτ2

This cashflow will be offset by the gain or loss in the spot market. Suppose the interest
on the loan is paid at the maturity of the loan. The total cashflow of the hedge at time
t2 then becomes:

f long hedge
t1 = (frt0,(t1×t2) − rt1,t2) + rt1,t2

= frt0,(t1×t2)

The hedger ends up receiving the contracted forward rate in all scenarios.

6.4 Eurodollar futures

A Eurodollar future is the exchange-traded equivalent of a forward rate agreement.
Futures are exchange traded, quoted on a daily basis and marked-to market.

The quotation of Eurodollar futures is based on a futures price id est, the interest rate
is not quoted in itself. However, we can still derive the interest rate from the quoted
futures price. The quoted future price is a function of the interest rate. This makes
the Eurodollar future somewhat different from the forward rate agreement.

We will also not have to do the discounting that took place in the forward rate agreement.
This is because the contract is settled at the beginning of the contract period. Id est
the settlement is calculated at the beginning of the contract period not at the end of
the contract period.

6.4.1 Eurodollar deposits

A Eurodollar refers to US Dollars that are held outside of the USA. A Eurodollar is
thus a Dollar that is not in the USA. The applicable interest rate is the Libor. The
most popular maturities for Eurodollar deposits are three and six months. The day
counting conventions depends on the market:

• For the United States, Japan and Europe ACT
360

is used.

• For Great Britain, Canada and Australia ACT
365

is used.

Consider the following example. A three month deposit of $1.000.000 has a lifespan
from from March 16th to June 15th and yields an interest rate of 4% p.a. a.c. This
Eurodollar deposit will yield the following amount of interest, at its maturity:

I = $1.000.000 · 0.04 · 91

360
= $10111.11
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6.4.2 Eurodollar futures characteristics

We now list some important properties and conventions with regard to forward rate
agreements:

• The notional value of a Eurodollar future contract is equal to $1.000.000.

• The underlying is a non-tradable time deposit.

• The deferment period can be different from contract to contract.

• The contract period is always three months.

• The last trading day is always two days before the third Wednesday of the delivery
month.

• The future is settled daily. On the last trading day, the final settlement takes
place.

Because Eurodollar futures are so standardized, we can easily calculate the cost of
a tick. Id est the change in the value of the Eurodollar future after an increase or
decrease of one basis point in the underlying. A decrease of one basis point in the
3-month Libor results in a decrease in the value of the long position in the Eurodollar
future. This loss is given by:

∆f long edf. = $1.000.000 · 1 bp. · 90

360

= $1.000.000 · 0.0001 · 90

360
= $25

The minimum price move is 1
4
of a tick i.e. $6.25 for contracts in the expiration month

and 1
2
of a tick i.e. $12.50 for all other contracts.

6.4.3 Quotation for Eurodollar futures

The quotation for Eurodollar futures is a function of the underlying i.e. the Libor
interest rate. The quote for a Eurodollar future is defined in the following way:

QP = 100− 100 · L

With L being the 3-month Libor with quarterly compounding.

When the Libor increases in value, the future quote goes down. This means the long
position gains when the quoted future price declines and loses when the quoted future
price increases. The short party gains when the future price increases and loses when
the future price declines.
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6.4.4 Payoff of a Eurodollar future

We express the payoff of the Eurodollar future contract in terms of basis point changes
in the underlying, being the Libor rt1,t2 . Note that we keep using the same notation as
with the interest rate forward contract for our convenience.

f short edf.
t1 = $25 · (frt0,(t1×t2) − rt1,t2) · 10.000

6.4.5 Hedging with Eurodollar future contracts

Consider the following example. An investor anticipates a three-month investment op-
portunity, starting in September with a notional value of $100.000.000. The investment
provides the prevailing Libor rate at the start of the investment period. The investor
wants to bridge the period until the start of the investment. To do so he wants to lock
in the current three month interest rate for a period of three months. This can be done
by entering a long Eurodollar future contract that expires in September. Suppose the
quote for the Eurodollar future is equal to $96.50. This indicates that the investor can
lock in an interest rate equal to:

L =
$100− $96.50

$100
= 0.035

To lock in the interest rate, the investor enters 100 long forward contracts:

N =
$100.000.000

$1.000.000
= 100

Suppose that, two days before the third Wednesday of September, the 3-month Eu-
rodollar rate turns out to be 2.6%. The final settlement is then at a price of $97.40.
The payoff from the Eurodollar future is given by:

f long edf.
t1 = ($25 · (frt0,(t1×t2) − rt1,t2) · 10.000) ·N

= ($25 · (0.035− 0.026) · 10.000) · 100
= $225.000

The interest, earned on the 3-month investment is therefore equal to:

I = Pr · τ · rt1,t2
= 100.000.000 · 0.25 · 0.026
= $650.000

The gain on the Eurodollar futures, brings the cumulative amount of the cashflows up
to:

f long hedge
t1 = I + f long edf.

t1

= $650.000 + $225.000 = $875.000
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We can see easily that this amounts to the cashflow that results from investing the
principal, at the interest rate at the time of entering the Eurodollar futures t0. Id est
we locked in the interest rate that applied at the time of entering the Eurodollar future
contracts.

f long hedge
t1 = frt0,(t1×t2) · Pr · τ

= 0.035 · $100.000.000 · 0.25
= $875000

6.4.6 Complications real world hedging

In practice, there are some complications when hedging with Eurodollar future contracts:

1. The contract period will not allays be exactly equal to 90 days.

2. The timing of the cashflows is not aligned. Id est the future contract will come
with a cashflow at the end of the deferment period t1. However, an investment
or a loan comes with cashflows at the end of the contract period. We want
to compare both cashflows at the same point in time. Therefore, we need to
compound the payoff of the Eurodollar future, that takes place at the end of
the deferment period t1, to the maturity of the investment t2. The payoff of the
hedge is then given by:

f long hedge
t1 = 1.000.000 · rt1,t2 · τ +

[
25 · (frt0,(t1×t2) − rt1,t2) · 10000

]
· (1 + rt1,t2 · τ)

We can easily see that our original position in the Eurodollar future is too large
due to the compounding factor. The solution to this exists in reducing the
magnitude of the original position with a factor equal to:

df =
1

1 + τ · rt1,t2

However, we are setting up the hedge at time t0. At this time, we do not know
what the Libor rate at the end of the deferment period rt1,t2 is going to be. We
therefore have to predict a value for rt1,t2 . Often, the forward rate is taken to be
a good estimate for the future spot rate. Mathematically, this becomes:

frt0,(t1×t2) ≈ rt1,t2
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6.4.7 Tailing the hedge

We should not forget that the daily settlements have an impact on the optimal size
of the hedge. We now try to adjust the hedge size, taking into account the impact of
daily settlements.

Consider a short position in a Eurodollar future to hedge the interest rate risk on a
loan in the future. The loan has a time to maturity of 90 days. An increase of α basis
points in the Libor would:

1. Give an immediate cash inflow on the future contract, equal to:

∆f long edf. = α · 25

2. Increase the interest burden on the loan with:

∆I t2 = 1.000.000 · 0.0001 · τ

However, this cashflow takes place at the end of the maturity of the loan. We
therefore need to discount this cashflow to the start of the contract period using
the Libor rate that applies to the maturity of the loan rt0,T . The increase in the
interest rate burden therefore becomes:

∆I t1 =
1.000.000 · 0.0001 · τ

1 + rt0,T · τ

3. We now need to choose α in such a way, that the advantage from the Eurodollar
future and the disadvantage from the increase in the interest burden, cancel each
other out. Mathematically, this becomes:

∆f long edf. = ∆I t1

α · 25 =
1.000.000 · 0.0001 · τ

1 + rt0,T · τ

α =
1.000.000 · 0.0001 · τ
25 · (1 + rt0,T ) · τ

=
1

1 + rt0,T · τ

=
1

1 + rt0,T · 90
360
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6.5 Comparing the forward rate agreement and the
Eurodollar future

We now want to compare the forward rate of forward rate agreements with the future
rate of Eurodollar futures.

The payoff of the long forward rate agreement at the end of the deferment period t1, is
given by:

f long fra.
t1 =

(rt1,t2 − frt0,(t1×t2)) · τ
1 + rt1,t2 · τ

The payoff of a short position in a Eurodollar future at the end of the deferment period
t1, is given by:

f short edf..
t1 =

1

1 + frt0,(t1×t2) · τ
· $25 · 10.000 · (rt1,t2 − frt0,(t1×t2))

= 1.000.000 ·
(rt1,t2 − frt0,(t1×t2)) · τ

1 + rt0,T · τ

We introduced the discount factor in the formula for the payoff of the forward rate
agreement because the cashflows are calculated at time t2 but take place at time t1.
This was not the case with the Eurodollar future contract. In the case of the Eurodollar
future contract, the payment takes place and is calculated at time t1. However, we
introduced a discount factor for the payoff of the Eurodollar future to adjust the hedge
size so it would take into account daily settlements.
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6.6 Bond futures

In the case of the Eurodollar future and the interest rate forward, the underlying was
a short term interest rate i.e. a money market interest rate. Now we will consider
forward contracts where the underlying is a bond.

6.6.1 The quotation of bonds

When quoting a bond, we need to take into account the accrued interest since the last
coupon date. The quoted price is always a percentage of the nominal value of the bond.
The cash price is the quoted price plus the accrued interests, since the last coupon
date.

6.6.2 Example

Consider a bond that expires on10/07/xx The most recent coupon payment took place
at 10/01/xx and the next coupon date is 10/07/xx. The day count convention is act

act
.

The bond price is quoted as $95 − 16. The price, expressed in a Dollar amount is
therefore given by:

P = $95− $
16

32
= $95.50

We can now calculate the accrued interest since the last coupon date:

Iaccr. =
54

181
· $5.5

= $1.64

We can now calculate the cash price for the bond. The cash price is given by:

CP = $95.5 + $1.64

= $97.14

6.6.3 Bond futures quotation

Future contracts are quoted in the same way as their underlying. For example, if bonds
are quoted as a percentage of their nominal value, then the future contracts on this
bond will also be quoted as a percentage of the nominal value of the bond.

As stated above, the quoted price does not take the accrued interest into account. We
therefore have to correct the quoted price for accrued interests since the last coupon
payment.
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6.6.4 Treasury bond futures

We now consider a treasury bond future. The bond on which this future contract is
written in a hypothetical bond i.e. the underlying bond does not exist in reality. There
is of course a link between the deliverable bonds and this hypothetical bond. This link
is made using so-called conversion factors. These conversion factors are calculated by
the exchange. Remember that the short party has the delivery options and can thus
choose which bond to deliver.

We denote the quote for the future on this hypothetical bond as Qfut. Converting
the future quote on the hypothetical bond to a future price for a deliverable bond, is
done by multiplying the quote with a conversion factor cf for the deliverable bond.
Mathematically:

P = Qfut · cf

This price however, will still need to be corrected for the accrued interests, since
the last coupon payment. This corrected amount is the total cash that is received.
Mathematically this becomes:

CP = Qfut · cf + Iaccr.

6.6.5 Example

Suppose the future price is equal to $90. The conversion factor cf for the deliverable
bond is equal to 1.83. The accrued interest on the particular bond that we will be
delivered is equal to $3 per $100. The cash price is theerfore equal to:

CP = $90 · 1.83 + $3

The party that is short sells the bond and will receive the cash price. The party that is
long and buys the bond will have to pay the cash price.

6.6.6 The impact of the delivery option

The short has to decide which true bond to deliver vis à vis the hypothetical bond.
The short party has the delivery option and will therefore always choose the cheapest-
deliverable bond. The short will maximize the net cashflow he receives. This net
cashflow is equal to the cashflow he receives by selling the bond via the future contract
minus the price he paid for that bond. Mathematically, this becomes:

= max
[
(Qfut. · cf + Iaccr.)− (Qbond price + Iaccr.)

]
= min

[
Qbond price −Qfut. · c

]
= min

[Qbond price

c

]
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We can easily create a table for different bonds where we calculate for each bond the
fraction above. We then choose the bond with the smallest fraction.

6.6.7 Example

The future value will depend on the value of the cheapest deliverable bond. Consider
for example the following three bonds:

Bond price c Qb −Qf Qp/c

$99.50 1.0582 2.69 95.84

$143.50 1.5188 1.78 94.48

$119.75 126.12 2.12 94.95

We can clearly see that the second bond is the cheapest-deliverable bond. The short
party will prefer to deliver this bond over the other available bonds.

6.6.8 Bond future valuation

The value of the future depends on the cheapest-deliverable bond. In general, we move
trough the following steps:

1. We determine the cheapest-deliverable bond.

2. We compute the quoted price in Dollar amounts.

3. We compute the accrued interests.

4. We determine the true value of the bond.

5. We can multiply the true value of the bond with the corresponding conversion
factor, to acquire the future price for the hypothetical bond underlying the future
contract.

Notice that we are therefore writing a future on the true value of this cheapest-deliverable
bond. Therefore the future price is given by the following equation:

Ft0 = (St0 − Iaccr.) · er·(T−t0)

Where Iaccr. represents the present value of the accrued interests and St0 represents the
quoted spot price of the bond in Dollar amounts.

Notice that the short party needs to determine which bond will be cheapest to deliver.
However, he does not know which bond this will be. The short therefore has to predict
which bond this will be. We will have to price the future as if the cheapest-deliverable
bond will not change.
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6.6.9 The bond price interest rate sensitivity

The theoretical price of a bond is given by the sum of the present value of all future
cashflows. Mathematically:

P = e−s1·τ1 · CF1 + ...+ e−sn·τn · CFn

Consider a small shock to all spot rates equal to ∆s. With this shock, the theoretical
price of the bond changes to:

P = e(−s1+∆s)·τ1 · CF1 + ...+ e(−sn+∆s)·τn · CFn

We can now calculate the the different between the bond price after the shock in the
interest rate and the price before the shock in the interest rate:

∆P =
[
e−(s1+∆s)·τ1 − es1τ1

]
· CF1 + ...+

[
e−(sn+∆s)·τn − esnτn

]
· CFn

=
[
e−s1τ1 · (e∆sτ1 − 1) · CF1 + ...+ e−snτn · (e∆sτn − 1) · CFn

]
We know that:

ex = 1 + x+
1

2!
x2 +

1

3!
x3 + ...

≈ 1 + x

Applying this formula to the expression for ∆P , we get:

∆P = e−s1·τ1 · (1−∆s · τ1 − 1) · CF1 + ...+ e−sn·τn · (1−∆s · τn − 1) · CFn

= −
[
e−s1τ1 · CF1 · τ1 ·∆s+ ...+ e−snτn · CFn · τn ·∆s

]
∆P

P
= −

[e−s1τ1 · CF1

P
· τ1 + ...+

e−snτn · CFn

P
· τn

]
·∆s

= −(w1τ1 + ...+ wnτn) ·∆s

= −Duration ·∆s
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6.6.10 The bond future price interest sensitivity

We will now calculate the duration of a bond future.

F = Pt0 · esf ·τF

=
(
CF1 · e−s1τ1 + ...+ CF2 · e−s2τ2

)
· esf τf

=
(
CF1 · esf ·τf−s1·τ1 + ...+ CFn · esf ·τf−sn·τn

)
We apply a shock to the interest rate and study the effect on the future price:

F = CF1 · e(sf+∆s)·τf−(s1+∆s)·τ1 + ...+ CFn · e(sf+∆s)·τf−(sn+∆s)·τn
)

With this, we can calculate the difference between the bond price after the interest
rate shock and the bond price before the interest rate shock.

∆F = CF1 ·
(
e(sf+∆s)·τf−(s1+∆s)·τ1 − esf τf−s1τ1

)
+ ...

= CF1 ·
(
esf τf−s1τ1 · e(τf−τ1)∆s − esf τf−s1τ1

)
+ ...

= CF1 ·
(
e(τf−τ1)·∆s − 1

)
· esf τf−s1τ1 + ...

= CF1 ·
(
(τf − τ1) ·∆s

)
· esf τf−s1τ1 + ...

∆F

F
=

CF1 ·
(
(τf − τ1) ·∆s

)
· esf τf−s1τ1 + ...

F

=
CF1 ·

(
(τf − τ1) ·∆s

)
· esf τf−s1τ1 + ...

Pt0 · esf τf

=
[
(τf − τ1) ·

CF1 · esf τf−s1τ1

Pt0 · esf τf
+ ...

]
·∆s

=
[
(τf − τ1) · w1 + ...

]
·∆s

The equation gives the percentual change in the future price due to a shock in the
interest rate. This is clearly a negative relationship.
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6.6.11 Hedging interest rate risk with bond futures

We can try to protect ourselves from these parallel shifts in the term structure of
interest rates. We hedge against this interest rate risk by matching the duration of
assets and liabilities.

∆P

P
= −Ds ·∆s

∆P = −Ds ·∆s · P

∆F

F
= −Df ·∆s

∆F = −Df ·∆s · F

We want to reduce compensate the price change of the bonds with the price change of
the future contracts. Mathematically:

∆P −N ·∆F = 0

Hence:

N∗ =
∆P

∆F

=
−Ds ·∆s · P
−Df ·∆s · F

=
Ds · P
Df · F

There are some limitations to this approach however:

• We use small interest rate shock for deriving the duration formulas.

• We use uniform interest rate shocks. Id est the shock in the term structure of
interest rates is parallel.

• We apply only one shock at a time.
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7 Swaps

In this chapter, we will take a closer look at swap contracts. We provide a brief overview
of the different subjects that are discussed within this chapter:

• Definition of a swap contract.

• Comparative advantage.

• Interest rate swaps.

– Overview

– The par yield.

– The zero curve with swap rates.

– Valuation.

– Overnight indexed swaps.

• Currency swaps.

– Overview.

– Valuation.

• Other swaps.
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7.1 Definition of a swap contract

A swap contract is an Over The Counter agreement i.e. it is not exchange traded.
The contract is concluded between two institutional parties. The contract entails an
exchange of future cashflows, according to a prearranged formula.

A forward contract can be viewed as a simple version of a swap. However, swaps
typically lead to cashflow exchanges on several future dates. This is the also key
difference between a forward contract and a swap.

Swaps alter the cashflows from assets or liabilities into preferred forms. That is,
investors use swap contracts to transform assets and liabilities.

7.2 Interest rate swaps

Interest rate swaps are one of the most important categories of swaps. An plain vanilla
interest rate swap is defined as a conversion of interest payments, based on a fixed
rate into payments based on a floating rate or vice versa. One of the counterparties
pays based on a fixed rate while the other party pays based on a floating rate. These
payments are exchanged on multiple future points in time.

There are two parties involved in a swap contract. One of the parties makes payments
based on a fixed rate that in applied to the notional. The other party makes payments
based on a floating rate that is applied to the notional. The resulting cashflows are
exchanged on multiple occasions in the future. The fixed interest rate is called the
swap rate. The floating interest rate is often the Libor. The notional principal itself is
not exchanged for interest rate swaps.

7.2.1 Example

Consider an example with two companies Intel and Microsoft. Microsoft pays a fixed
interest rate while Intel pays the floating interest rate. The fixed interest rate is equal
to 5% p.a. s.c. while the floating interest rate is equal to the 6-month Libor. The
notional amount is equal to $100.000.000. The length of the contract is equal to five
years. The cashflow exchanges take place semi-annually.

The table below gives an overview of the different cashflows throughout the life of the
swap contract. Note that there is no uncertainty with regards to the first cashflow.

Date Libor Floating cf. Fixed cf. Nett cf.

0 years 4.20

0.5 years 4.80 +2.10 -2.50 -0.40

1.0 years 5.30 +2.40 -2.50 -0.10

1.5 years 5.50 +2.65 -2.50 +0.15

2.0 years 5.60 +2.75 -2.50 +0.25

2.5 years 5.90 +2.80 -2.50 +0.30

3 years +2.95 -2.50 +0.45
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7.2.2 Applications of interest rate futures

• Companies use interest rate futures to transform fixed rate assets/liabilities into
floating rate assets/liabilities and vice versa. Consider the following example:

– Microsoft takes out a loan with a nominal value of $100.000.000 at Libor
+0.1% from outside lenders. Intel also takes out a loan from outside lenders
with a nominal value of $100.000.000 and pays an interest rate of 5.2% fixed.
Suppose Microsoft would rather pay a fixed rate and Intel would rather pay
a floating rate.

– The solution for both parties is to enter into a swap contract. The swap
contract would determine that Microsoft pays the 5% fixed interest rate to
Intel. Intel on the other hand would pay Libor. The result for Microsoft
would be to pay a fixed interest rate of 5.1%. The result for Intel would be
to pay the floating interest rate of Libor +0.2%

– We can clearly see that swap contracts allow companies to transform floating
rate liabilities/assets into fixed rate liabilities/assets.

• The main purpose of transforming assets and liabilities between fixed and floating
rates is to hedge away interest rate risks. To see this, consider the following
example:

– A bank provides 20-year mortgage loans at a fixed rate of 3%. The bank
funds itself by taking on deposits, which provide the floating rate of six
month Libor plus 0.5%. It is clear that bank’s assets provide a fixed rate
while the bank liabilities are on a floating rate. This difference constitutes
an interest rate risk. When interest rates rise, the outgoing cashflows will
increase in value while the incoming cashflows will remain constant for
foreseeable years. Therefore, if the Libor increases, the financing cost will
also increase. The opposite also holds true.

– A bank wants to hedge away this exposure to interest rates. To do this, the
bank could enter into a swap contract. Consider for example that the bank
enters a forward contract where the bank pays a fixed interest rate of 3%
and where it receives a floating rate of Libor +2.5%. The result would be
that the bank receives a floating rate of 2%.

– After entering the swap contract, the bank will have hedged away its exposure
to interest rate changes completely.
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• Another reason to transform assets/liabilities is because the parties that enter the
swap contract have a comparative advantage. To understand what this means,
we go over the theory of the comparative advantage. This theory shows that
trade is not a zero-sum game, when participants have a comparative advantage
over one another.

– Consider two different countries for instance China and the USA. Both
countries produce cars and trucks. The number of cars that can be produced
per unit of input is given in the table below.

Country USA China

Cars 40 10

Trucks 40 30

– We can also make a graphical representation of the combinations of products
that are producible for each country. This graph is called the production
possibility frontier.
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Figure 7.1: Production possibility frontier China and USA.

– We can easily see that the USA has an absolute advantage in the production
of both cars and trucks. We now ask ourselves whether both countries can
set-up a system of trade that is beneficial to both.

– To set up such a system we have to look at the opportunity cost of both
cars and truck for both countries. For the USA, the opportunity cost of
producing one car is equal to one truck. For China, the opportunity cost
of producing one car is equal to three trucks. The opportunity cost for
producing trucks is lower for China than for the USA. From this it becomes
clear that China should specialize in producing trucks.

– A system of trade that is beneficial for both nations can now be set up. China
would be willing to give up two trucks for one car because its opportunity
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cost to produce a car is higher at three trucks. The united states would
be willing to give up one car for two trucks because its opportunity cost to
produce a truck is higher at one car.
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– Suppose the USA would trade ten cars for twenty trucks. In that case, the
USA would have 30 cars and 20 trucks while China would have ten cars
and ten trucks. We can easily see that these points lay on the right of the
production possibility frontier. Id est these production combinations could
not be reached before. Trading actually broadens the possibilities for both
nations.

– Long story short; even tough one party has an absolute advantage in the
production of all products, trade can be mutually beneficial. This is the
case when both parties have a comparative advantage in one of the goods.

7.2.3 Swaps and the comparative advantage

• Companies transform assets and liabilities to take advantage of their comparative
advantage in the interest rate market by entering a swap agreement.

• Consider the example where we have a first company called AAACorp and a
second company called BBBCorp. AAACorp is interested in paying a floating
rate while company B is interested in paying a fixed rate. Both companies can
take out loans at the interest rates that are given in the table below.

Company Fixed rate Floating rate

AAACorp 4% 6−month Libor − 0.1%

BBBCorp 5.2% 6−month Libor + 0.6%

• AAACorp has an absolute advantage in both fixed and floating rates. However, it
is clear that the companies each have a comparative advantage. The opportunity
cost for the fixed interest rate is lower for BBBCorp than for AAACorp.

• AAACorp should borrow at the fixed rate while BBBCorp should borrow at the
floating rate. Both parties can then set up a mutually beneficial swap agreement
where AAAcorp pays a floating rate and receives a fixed rate and where BBBCorp
takes the opposite position.

• Suppose for example that AAACorp enters into a loan where it pays a fixed
interest rate of 4%. Company B enter into a loan where it pays a floating interest
rate of 6−month Libor + 0.6%. Both parties conclude a swap agreement where
AAACorp would pay Libor and would receive a fixed interest rate of 4.35%.
AAACorp would then end up paying 6−month Libor − 0.35%. BBBCorp would
end up paying a fixed interest rate of 4.95%. Both parties benefit. Id est, both
parties end up paying interest rates that are lower than they could have been
able to contract themselves.

• Notice that in this case, the advantage for both parties is equal. However, this
does not need to be the case.

• There is no comparative advantage when the opportunity cost for both parties is
equal. In that case, the production possibility frontiers are parallel.
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7.2.4 Finding a counterparty

• We now ask ourselves how a company can find another company that would be
interested in taking the opposite position in a swap agreement. Id est, how does
a company find a suitable counterparty?

• In practice, large financial institutions are willing to act as market makers. Market
makers are prepared to enter into a swap without having an offsetting position
within another swap. The financial institution charges a spread for this service.
This spread is usually equal to three to four basis points.

• These market makers quote bid/ask rates. These quoted rates are the fixed rates
the financial institution is willing to exchange for a given floating rate like Libor.
The quoted bid interest rate is the fixed interest rate a company will receive
for paying the Libor. The quoted ask interest rate is the fixed interest rate a
company will have to pay to receive the Libor.

7.2.5 The par yield

• The par yield is the coupon rate that causes the price of a bond to be equal to
its par/principle value.

• We are looking for the coupon rate, given the term structure of interest rates for
which the bond price is equal to its principal value.

• Consider the example of a two-year bond with annual coupons and a par value
of $100. The term structure of interest rates is given in the table below.

Time to maturity Zero rate

1 year 4%

2 years 6%

We can then easily calculate the coupon for the bond:

P = PV (coupon) + pv(coupon+ principal)

P = Ct1 · e−rt0,t1 ·τ1 + Ct2 · e−rt0,t2 ·τ2 + Pr · e−rt0,t2 ·τ2

100 = C · e−0.04·1 + C · e−0.06·2 + 100 · e−0.06·2

C = 6.12

From this, we can easily derive the coupon rate as follows:

γ =
C

Pr

=
6.12

100
= 0.0612
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7.2.6 Valuation of interest rate swaps

• To calculate the value of an interest rate swap we should take the sum of the
present value of each cashflow that takes place during the swap contract. However,
the cashflows are based on the value of the floating interest rate which is unknown.

• Imagine the principal is being exchanged at the end of the swap. The cashflows
can then be interpreted as the cashflows of a bond.

The value of a swap position where cashflows based on the floating rate are
received and where cashflows based on the fixed rate are paid is therefore equal
to the value of a bond whose coupons are based on a floating interest rate minus
the value of a bond with fixed coupon payments.

The swap is thus split into two legs i.e. a fixed rate bond and a floating rate
bond. Mathematically, this becomes:

Vswap = Bfl. −BFix.

• Consider a bond that provides coupons based on a floating interest rate. To
discount the coupons of this bond, we can use the same floating rate. Therefore,
immediately after every coupon payment the bond should be priced at par.

If the interest rate goes up, the coupon is discounted more heavily, but the
coupon gets bigger at the same rate. If the interest rate goes down, the coupon
is discounted less heavily, but the coupon gets smaller at the same rate.

In summary, whatever the movement of the interest rates, the present value of
the coupon stays the same. This is because the coupon is determined by the
same interest rate that is used to discount the coupon. A floating rate bond is
thus priced at par, immediately after every coupon payment, when there still is
no accrued interest.

This can also be shown mathematically by considering the equation for the value
of a floating rate bond at its time of inception. At this time, there is no interest
accrual.

f fl.
t0 =

n∑
i=1

ri ·N
(1 + ri)n

+
N

(1 + rn)n

Note that the first term is a geometric series, so the following applies:

Sn =
a · (1 + rn)

1− r

Where: {
a = ri

1+ri

r = 1
1+ri
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We can then rewrite the equation for the value of the floating rate bond:

f fl.
t0 = N ·

ri
1+ri

· (1 + (1 + rn)
−n)

1− 1
1+ri

= N ·
[
1− (1 + rn)

−n +
1

(1 + rn)−n

]
= N ·

[
1− (1 + rn)

−n + (1 + rn)
n
]

= N

• The formula above tells us that the value of the floating rate bond at its time of
inception needs to be equal to the face value of the bond. Note that this is only
true if the interest rate curve that is used to determine the coupons is the same
as the interest rate curve that is used to discount the coupons back to time t0.

• This result can easily be confirmed by using an example. Consider for instance
a floating rate bond with a principal value of $100 that provides the six-month
Libor which is equal to 2%. The time to maturity is one year. Suppose we
have just received a coupon payment. The coupon within six months and at the
maturity of the bond is given by:

C = Pr · c
= $100 · 0.02
= $2

As we discussed before, the present value of the bond, just after the first coupon
payment can be calculated by discounting the cashflows at the prevailing interest
rate. The bond is then priced at par. Mathematically:

P =
C

(1 + rt0,t0+6m)6m
+

C + Pr

(1 + rt0,t0+12m)12m

=
2

1.021
· 102

1.022

= 100

= Pr

• We now have all the tools needed to value an interest rate swap. We avoided the
problem of not knowing the future cashflows of the floating rate bond by using
the coupon rate as the interest rate used for discounting.
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• Consider the example where a financial institution has agreed to pay the six-
month Libor and receive a fixed interest rate of 8% p.a. s.a. on a principal
of $100.000.000. The swap contract has a remaining time to maturity of 1.25
years. The Libor rates for different maturities are given in the table below. The
six-month Libor rate at the time of the last payment was equal to 10.2%. We
want to determine the value of the swap.

Time to maturity Six month Libor

-3 months 10.2%

3 months 10.0%

9 months 10.5%

15 months 11.0%

First, we calculate the present value of the fixed rate bond:

Bfix
t0 = C · er·3m + C · er·9m + (C + Pr) · er·512m

= 4 · e0.04·
3
12 + 4 · e0.04·

9
12 + 104 · e0.04·

15
12

= $98.24

Next, we calculate the present value of the floating rate bond. We only consider
the first coupon payment while the bond already has accrued interest at the time
of valuation.The other coupons and the principal are discounted at the coupon
rate.

The value of the bond will be slightly above the principal value while the bond
already has accrued some interest. First we determine the value of the bond at
the time of the coupon payment. As we already know, this is the sum of the
coupon and the principal value. The value of the bond at the time of valuation
t0 is three months earlier. We therefore need to discount the value of the bond
with three months.

Bfl.
t0 = (Ct1 + Pr) · et1−t0

= (
0.102

2
· 100 ·+100) · e−0.105· 3

12

= 105.1 · 0.974091536
= $102.38

Recall that the financial institution is long in the fixed rate bond and short in
the floating rate bond. The value of the swap is therefore given by:

Vswap = Bfix.
t0 −Bfl.

t0

= $98.24− $102.38

= −$4.27
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7.2.7 Determining the swap rates

At the time of the inception of the swap contract, the swap rates are determined by a
market maker The market maker computes the swap rate in such a way that the swap
is of no value to both parties. We know that the value of a long position in fixed rate
in the swap contract is given by:

Vswap = Bfix.
t0 −Bfl.

t0

Therefore, it must follow that the value of the floating rate leg is equal to the value of
the fixed rate leg. Mathematically, this becomes:

Bfix.
t0 = Bfl.

t0

We showed that, at the beginning of the contract, the value of the floating leg has to
be equal to the principal value of the bond:

Bfl.
t0 = Pr

From the two expression above, it follows that the value of the fixed rate leg has to
be equal to the principal value. This means that the swap rate, as determined by the
market maker has to be equal to the par yield. Mathematically:

f fix
t0 = N ⇐⇒ r = γpar

7.2.8 Example

Consider a five-year swap agreement with semi-annual payments. The five-year swap
rate is swapped for the six-month Libor rate. Suppose the six-month, twelve-month
and eighteen month Libor rates are equal to 4%, 4.5% and 4.8% with continuous
compounding. The fixed swap rate is equal to 5%. We want to determine the two-year
Libor rate.

Conceptually, this arrangement corresponds with a two-year bond that provides semi-
annual coupons, where the coupon rate is equal to 5% p.a. As we discussed already,
this bond should be priced at par. This means that the price of the bond is equal to
the principal value of the bond. The price of the bond is calculated as the present
value of all future cashflows. Coupons at different points in time are discounted using
the corresponding Libor rate. The only unknown variable left in the equation is the
Libor rate with a maturity of two years. Mathematically:

P = Ct1 · e−rt0,t1 ·(t1−t0) + Ct2 · e−rt0,t2 ·(t2−t0) + Ct3 · e−rt0,t3 ·(t3−t0)

+ (Ct4 + Pr) · e−rt0,t4 ·(t4−t0)

100 = 2.5 · e−0.04· 6
12 + 2.5 · e−0.045· 12

12 + 2.5 · e−0.048· 18
12 + 102.5 · e−rt0,t4 ·

24
12

rt0,t4 = 0.04953
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7.2.9 Overnight index swaps

An overnight indexed swap is a type of interest rate swap. So far, we used the Libor as
a proxy of the risk-free interest rate. However, during the financial crisis of 2008, banks
became very reluctant to lend to one another. This caused the Libor to sky-rocket. It
became apparent that the Libor can change considerably during a short period of time.

An overnight indexed swap rate is a better index for the risk-free rate. An overnight
indexed swap is a swap agreement where a fixed rate is exchanged for the geometric
average of the overnight interest rate. At the end of each period, the geometric average
of the overnight rates is exchanged for the fixed OIS rate.

The geometric average of a set of n elements is n-th root of the product of these
elements. When one of the elements is zero, the geometric average is equal to zero.
Mathematically:

E geo.(i1, i2, ..., in) =
n
√
i1 · i2 · ... · in

Lending money overnight for three months is less risky then lending money for three
months. A lot can go wrong in three months time. The risk that something goes
wrong overnight is rather small. Furthermore, a swap contract has less risk than a loan
because the principal is not exchanged.

The three-month Libor-OIS spread reflects the difference between the credit risk in a
three-month loan to bank that is considered to be of acceptable credit quality and the
credit risk in continually-refreshed one day loans to banks that are considered to be of
acceptable credit quality. This difference is often used as an indicator of stress in the
financial system.
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Note that an interest rate swap can also be value by replicating the swap with a
portfolio of forward rate agreements.

The floating rate leg involves payments that reset periodically. At each reset date, the
bond is at par which means that the present value of the bond will be equal to the
notional value of the bond.

The coupon rate is determined at each reset date to match the prevailing market rate.

The discounting mechanism also uses the prevailing market rate.

So at each reset date, the value of the floating rate bond will be equal to the notional
value of the bond.

swapping risk positions by swapping cash flows.

Describe how swap contracts are similar but differ from a series of forward contracts.

A forward has only a single payment at maturity, a swap typically involves a series of
payments in the future.

A single period swap is equivalent to entering a single forward contract. A fixed interest
rate and a market reference rate are determined at the inception of the contract. A
notional value is determined at the start of the contract this is the contract size of the
forward rate agreement. The cash settlement at the maturity of the forward contract is
determined by taking the difference between the fixed interest rate and the value of the
market reference rate at maturity. This difference is then multiplied by the nominal
value of the forward contract.

A one period interest rate swap agreement is equivalent to a forward contract. An
interest rate swap can therefore be viewed as a series of forward rate agreements.

However, notice that for a series of forward rate agreements, there will be multiple fixed
interest rates. In the case of an interest rate swap, a single fixed rate is determined at
applies throughout the whole lifetime of the swap. For an interest rate swap, there is a
single fixed interest rate whichcan be interpreted as the multi period breakeven rate at
which an investor would be indifferent to:

• paying the fixed swap rate and receiving the respective forward rates or

• receiving the fixed swap rate and paying the resepctive forward rates

In swap contracts, sometimes the notional amount is exchanged at the inception of the
contract.

Both are OTC products. So they are not traded on an exchange, they are tailor-made.
Both have a symmetric payoff profile Both have counterparty credit risk exposure.

Describe how swap contracts are similar to but different from a series of forward
contracts.

Alternative way to price an interest rate swap would be to determine the implied
forward rates. The swap rate is the fixed rate that equates the present value of all
future expected floating cash flows to the present value of fixed cash flows. The interest
payments of the floating rate bond can be determined by multiplying the implied
forward rates with the notional value of the bond. These interest payments then need
to be discounted back to t0. This can be done using the zero rates. The value of the
floating rate bond then needs to be equated the to value of the fixed rate bond to
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determine the fixed rate.

The net of fixed and floating differences is exchanged at the end of each period.
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7.3 Currency swaps

A currency swap is defined as an exchange of a principal amount in one currency and
a principal amount in another currency. There are two parties involved in a currency
swap. There are two different currencies each with a corresponding interest rate. The
principals are exchanged between the parties at the inception of the swap contract and
at the end of the life of the swap contract. The principal amounts swapped at the
inception of the contract and at the maturity of the contract need not be the same.
However, the exchange rates will need to be determined in advance. Interest payments
are made throughout the life of the swap and are based on the interest rate of the
currency of the principal received.

7.3.1 Example

We first consider an example where IBM and BP that enter into a currency swap as
counterparties. IBM wants to exchange the PS for USD. BP takes the opposite position.
The currency swap involves principal amounts of £10.000.000 and $18.000.000. The
interest rate on the USD is a fixed interest rate of 6% while the interest rate on the PS
is a fixed rate of 5%. The currency swap is thus a fixed-for-fixed currency swap. The
length of the contract is equal to five years. The contract has annual settlements. The
table below shows the cashflows for IBM in this currency swap. IBM exchanges the
principal in USD for a principal in the PS. IBM pays the interest rate that applies to
the PS and receives the interest rate that applies to the USD.

Elapsed time USD cashflow PS cashflow

0 years −$18.00 +£10
1 year +$1.08 −£0.50
2 years +$1.08 −£0.50
3 years +$1.08 −£0.50
4 years +$1.08 −£0.50
5 years +$19.08 −£10.50

7.3.2 Applications of currency swaps

• Companies use currency swaps to transform assets and liabilities from one currency
into another currency. Companies want to transform assets and liabilities because
they can hedge currency risks and interest rate risks in doing so.

• Consider the example where a Belgian brewing company sets up a plant in Brazil
to supply the local market.

– To finance this plant, the company enters into a loan with a Belgian bank.
The loan and interest payments are therefore in Euro. However, the revenue
of the plant is denominated in Brazilian Real. A strong depreciation in the
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Brazilian Real would therefore hurt the profits of the company. Naturally,
the company wants to hedge away this risk.

– One solution is to use currency swap agreements. The company would
exchange the principal amount of the loan denominated in Euro for an
equivalent amount in Brazilian Real. The plant could then be financed in
Brazilian Real.

– Throughout the life of the swaps the company pays interest based on the
Brazilian interest rate and receives interest payments based on the Euro
interest rate. The interest paid is therefore the difference between the Euro
interest received and the Brazilian Real interest paid.

– Note that the company can use the Euro interest received to pay the interest
on the Euro loan it has entered into with the Belgian bank.

– At the maturity of the swap, the plant has hopefully generated enough
revenue to redeem the principal of the swap in Brazilian Real. The company
recovers the principal in Euro in exchange for the principal in Brazilian
Real.

– The principal in Euro can then be used to redeem the loan in Euro that is
held with the Belgian bank.

• Companies would also want to transform assets and liabilities between different
currencies to take advantage of comparative advantages.

• Consider the example of two companies who are able to take out loans in the
USD and in the AUD.

– The interest rates that apply for both companies are given in the table
below.

Company name United States Dollar Australian Dollar

General Electric 5.0% 7.6%
Qantas Airlines 7.0% 8.0%

Difference 2% 0.4%

– General Electric has the absolute advantage in both markets. However,
Qantas Airlines has a comparative advantage in the market for the AUD.
We can therefore set up a swap agreement to the advantage of both parties.
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7.3.3 Valuation of currency swaps

To value a currency swap, we have to decompose the swap into two bonds. In this case
the two bonds are fixed rate bonds but in different currencies. The value of the swap
for the party that receives interests in its domestic currency and pays interests in a
foreign currency is given by:

Vswap = Bdom.
t0

− St0 ·B
for.
t0

Where Vswap represents the value of the swap, Bdom.
t0

represents the value of the bond

in the domestic currency, Bfor.
t0 represents the value of the bond in the foreign currency

and St0 represents the exchange rate.

7.3.4 Exercise

Suppose the term structure of interest rates is flat in Japan and in the United States.
The interest rate that applies for the JPY is equal to 4% p.a. c.c. The interest rate
that applies for the USD is equal to 9% p.a. c.c.

A financial institution enters into a currency swap. It exchanges $10.000.000 for
¥1.200.000.000. Interest payments take place once a year. The financial institution
pays interest based on the JPY interest rate and receives interest based on the USD
interest rate. The time to maturity of the swap is three years. The current exchange
rate for one USD is ¥110.

We want to determine the value of this swap. First, we set up a table with the different
cashflows of the swap and their present value. The table is shown below.

Time Cashflow in USD Cashflow in JPY PV cashflow in USD PV cashflow in JPY

1 $800.000 ¥60.000.000 $738493, 08 ¥57073765, 47

2 $800.000 ¥60.000.000 $681715, 03 ¥54290245, 08

3 $10.800.000 ¥1.260.000.000 $8495580, 90 ¥1084492050, 30

Total $9915789, 01 ¥1195856060, 85

The value of the USD bond is equal to $9915789, 01 while the value of the JPY bond is
equal to ¥1195856060, 85. The value of the JPY bond, expressed in USD, is given by:

¥1195856060, 85

110¥
$

= $10871418, 74

The value of the swap can therefore be computed in the following way:

Vswap = Bdom.
t0

− St0 ·B
for.
t0

= $10871418, 74− $9915789, 01

= 955629, 73
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Technically, there is a difference between an FX swap and a cross currency swap. In the
case of a cross-currency swap, both the principal amount and interest on the principal
amount is swapped. In the case of an fx-swap, this does not need to be the case.

Interest payments can be based on a floating rates, fixed rates or one party may pay a
floating rate while the other party pays a fixed rate.

Note that fx swaps can therefore be used to hedge both foreign exchange rate risks as
well as interest rate risks.

Currency swaps can also be used to obtain lower interest rates than they could get if
they would borrow directly in a foreign market. Currency swaps don’t need to appear
on a company’s balance sheet, while a loan would.

Another reason why currency swaps are used is to gain access to a foreign currency.
Companies may find it difficult to attain the foreign currency through traditional means
and may need that foreign currency to make payments.

there is counterparty risk inherent in currency swaps. This means that there is a risk
that one of the parties may default on their obligations.

Finally, currency swaps have limited liquidity, which makes it difficult to enter or exit
a swap agreement at a favorable rate.

Other financial instruments can be used in lieu of currency swaps. These include
forward contracts and call options. Also, instead of using currency swaps, companies
can use natural hedges to manage currency risk.
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7.4 Other swaps

• An equity swap is an agreement to exchange the total return realized on an equity
index for either a fixed or a floating interest rate.

• A credit default swap is a contract that provides insurance against the risk of
default of a particular company.

• Swaps are limited only by the imagination of financial engineers and the desire
of corporate treasurers and fund managers for exotic structures.
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8 Option strategies

In this chapter we will discuss different option trading strategies. An option strategy
is defined as a portfolio consisting of options on a given underlying asset, possibly
combined with the asset itself. The aim of such a strategy is to create a specific
payoff profile. The strategy incorporates a view on the direction and possibly even the
volatility of the market of the underlying asset. There are different groups of option
strategies:

• The naked option. This portfolio only contains a short position in an option
without having a position in the underlying asset. This type of portfolio is used
to create an exposure to a certain risk.

In securities trading in general, a naked position refers to a securities
position, long or short, that is not hedged from market risk. Both the
potential gain and the potential risk are greater when a position is naked
instead of covered or hedged in some way.

• The covered call. A covered call option portfolio contains a short call option and
the underlying itself.

A situation in which an investor writes an option while holding an
equal and opposite position on the underlying asset. A covered call
option occurs when the investor owns the underlying asset and writes a
call so that the underlying is on hand to sell to the option holder if the
option is exercised.

• The protective put. A protective put option portfolio contains a long put option
and the underlying itself.

A protective put involves holding a long position in the underlying asset
and purchasing a put option with a strike price equal or close to the
current price of the underlying asset. A protective put strategy is also
known as a synthetic call.

• The option spread. A spread contains multiple options of the same class i.e. only
calls or only puts.

A spread position is entered by buying and selling equal number of
options of the same class on the same underlying security but with
different strike prices or expiration dates.

• Combinations of the above.
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8.1 Option contracts basics

• Before continuing we quickly repeat the basics of options contracts. There are
two possible positions in an options contract i.e. the long position and the short
position. The long position buys the option contract while the short position
sells the option contract. The party that is long posses a right to sell or buy
the asset underlying the option contract. The right of the long party entails an
obligation for the short party.

• There are different types of option contracts. Option contracts differ in the
obligation/right they grant to the party that is short/long. Options that give the
long party the right to buy the underlying asset are called call options. Options
that give the long party the right to sell the underlying are called put options.

• An option class refers to all the call options or all the put options listed on an
exchange for a particular underlying asset.

• An option series refers to a grouping of options on a given underlying security
with the same specified strike price and the same expiration month. However,
call and put options are parts of separate series. For example, a call option series
would include all the available calls on a specific security at a certain strike price
that will expire in the same month.

• An option is a non-linear product i.e. the payoff at maturity of the option is
not a linear function of the spot price at maturity of the underlying asset. The
reason for this is that the long party will not exercise his option until the option
is in the money. When the option is out of the money, the payoff at maturity of
the option is equal to zero. As long as the option is in the money, the payoff of
the option at maturity is a linear function of the spot price of the underlying at
maturity. The figure below shows the payoff profile for the different positions in
and types of option contracts.
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Figure 8.1: Payoff diagram for a call option (left) and a put option (right). The long
position is indicated in red while the short position is indicated in blue.

182



• We now list the payoff functions for all possible combinations of option type and
position:

f long call
T =

{
0, ST < K

ST −K, ST > K
f long put
T =

{
K − ST , ST < K

0, ST > K

f short call
T =

{
0, ST < K

K − ST , ST > K
f short put
T =

{
ST −K, ST < K

0, ST > K

8.2 The covered call

• A covered call option is an option strategy where the portfolio consist of a short
call option and the underlying asset of the option contract.

• First, consider the payoff profile of a short call option. It is clear that, if the
underlying increases in value, the loss on the short call option will be significant.

• Suppose an investor wants to eliminate the risk of such a loss. One possibility is
to buy the underlying asset at the time of entering the short call option. When
the underlying increases in value, the investor will not have to pay the higher
price to acquire the underlying. This is where the name of the strategy originates.

• We will now derive the payoff function of this portfolio.

– Suppose the spot price of the underlying at maturity ST is below the strike
price K. The call option will not be exercised. Therefore, the short call
position does not provide any cashflows at maturity. However, the investor
still posses the underlying a maturity. He can sell the underlying, granting
him a positive cashflow of magnitude ST .

– Suppose the spot price of the underlying at maturity ST is greater than the
strike price K. The call option will be exercised in that case. The loss in the
option strategy is then equal to K − ST . However, this loss is nullified by
the long position in the underlying. At maturity, the value of the underlying
is equal to the spot price of the underlying at that time ST .

– The payoff of the whole strategy is thus given by:

f cov. call.
T =

{
ST , ST < K

K, ST > K

– The payoff function of the covered call can be acquired by simply summing
the payoff profiles of the short call option and the payoff profile of the
underlying.
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• The payoff profile of both the short call option and the covered call is shown in
the figure below.

0 50 100 150 200−
10

0
−

50
0

50
10

0

Spot price of underlying at maturity

P
ay

of
f o

f o
pt

io
n 

po
si

tio
n 

at
 m

at
ur

ity

Short call

0 50 100 150 200−
10

0
−

50
0

50
10

0
15

0

Spot price of underlying at maturity

P
ay

of
f o

f s
tr

at
eg

y 
at

 m
at

ur
ity

Covered call

Figure 8.2: Payoff diagram for a short call option (left) and payoff diagram for a covered
call option strategy (right).

• In conclusion, a covered call is an option strategy where the portfolio consists of a
short call option that is covered by going long spot in the underlying. The main
idea is to protect an investor against upwards price movements in the underlying.
If the price of the underlying would rise, the underlying is already available. The
investor will therefore not have to pay the higher price to acquire the underlying.

• Note that this is not a hedged position. The value of the portfolio is still subject
to changes in the value of the underlying. We have a short call position which is
hedged to the upside. However, the portfolio can still decrease in value. If the
underlying decreases in value, the portfolio will decrease in value. What we did
was substitute the risk of a stock increase with the risk of a stock decrease. This
time however, potential losses are limited because the downside potential for the
stock is limited while the upside potential is unlimited.

• A reverse covered call is an option strategy where the portfolio consists of a long
call option and a short position in the underlying asset. We prevent the shorter
from having to pay the higher spot price when reacquiring the asset. The payoff
profile of this strategy is shown in the figure below.
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Figure 8.3: Payoff diagram for a long call option (left) and payoff diagram for a reversed
covered call option strategy (right).

8.3 The protective put

• A protective put involves holding a long position in the underlying asset and
purchasing a put option with a strike price equal or close to the current price of
the underlying asset.

• First, consider the payoff profile of a given asset. In the case of a serious market
crash, the asset could severely decrease in value. In such a case an investor
would want to sell the asset. However, selling the asset might come with high
transaction costs. The investor could alternatively choose to add a long put to
his portfolio.

• We will now derive the payoff function of this portfolio.

– Suppose the spot price of the underlying at maturity ST is above the strike
price K. The put option will not be exercised. Therefore, the long put
option does not provide any cashflows at maturity. However, the investor
still possesses the underlying at maturity which has a value of ST .

– Suppose the spot price of the underlying at maturity ST is smaller than
the strike price K. The long put option will be exercised in that case. The
payoff of the long put option is equal to K − ST . The price decline in the
underlying therefore positively affects the value of the long put options.
However this gain is nullified by the decline in the value of the underlying.

– The payoff of the whole strategy is thus given by:

f prt. put.
T =

{
(K − ST ) + ST = K, ST < K

ST , ST > K

– The payoff function of the protective put can be acquired by simply summing
the payoff profiles of the long put option and the payoff profile of the
underlying.
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• The payoff profile of both the long put option and the protective put are shown
in the figure below.
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Figure 8.4: Payoff diagram for a long put option (left) and payoff diagram for a protected
put option strategy (right).

• In conclusion, a protected put option is an option strategy where the portfolio
consists of a long put option and a long position in the underlying value. The
long put acts as a form of insurance against declines in the value of underlying
asset. Id est the long put ensures that the value of the portfolio does not decline
further than a thresholds value. This threshold value is equal to the strike price
of the option. Insurance is not a free lunch. It is therefore intuitively clear than
an investor will have to pay a premium to acquire the long put option.

• A reverse protective put is an option strategy where the portfolio consists of a
short put option and a short position in the underlying asset. We exchange the
upside potential of the short for a premium. The payoff diagram of both the
short put option and the reverse protective put strategy are shown in the figure
below.
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Figure 8.5: Payoff diagram for a short put option (left) and payoff diagram for a reverse
protected put option strategy (right).
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8.4 Option spreads

• The portfolio of an option spread strategy consists of an equal number of options
of the same type on the same underlying but with different maturities or different
strike prices. We can discern three major groups of spreads:

1. Vertical spreads.

2. Diagonal spreads.

3. Horizontal spreads which are also known as calendar spreads.

• The naming of the different groups of spreads is purely historical. In the past,
option prices were listed in tables where the rows represented different strike
prices and the columns represented different maturities. Combining options of
different maturities in a portfolio is called a horizontal spread. Combining options
of different strike prices in a portfolio is called a vertical spread. Combing options
with different maturities and strike prices is called a diagonal spread.

• The figure below shows how options are traditionally listed on an exchange.

τ1 τ2 τ3 ...

K1

K2

K3

...

• Within the category of spreads reside different strategies that reflect specific
outlooks on the market.
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8.4.1 Bull-spread with calls

• The portfolio for a bull spread with calls strategy consists of a short call option
and a long call option with different strike prices. The strike price of the short is
higher than the strike price of the long. Mathematically this becomes:

K short call > K long call

• The payoff of the long call starts to increase when the spot price of the underlying
at maturity overtakes the strike price K long call. The payoff of the short call starts
to decrease when the spot price of the underlying at maturity overtakes the strike
price K short call. The payoff of the portfolio will therefore start to increase when
the spot price of the underlying at maturity overtakes the strike price of the long
call option. This increase in the payoff will be nullified by the short call option
when the spot price of the underlying at maturity overtakes the strike price of
the short call option. The figure below illustrates our explanation.
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Figure 8.6: Payoff diagram for a long (red) and short (blue) call option (left) and payoff
diagram for a bull-spread with calls option strategy (right).

• This option strategy is used by bullish investors who expect a rise in the value of
the underlying asset between two boundaries. The lower boundary is equal to
the strike price of the long call option while the upper boundary is equal to the
strike price of the short call option.

• Our investor expects a rise in the value of the underlying, but not above a certain
price. He will therefore first buy the full upside potential of the underlying with
the long call option and afterwards sell part of the upside potential to other
investors via the short call option.
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8.4.2 Bull-spread with puts

• We can also create a bull spread with put options. The portfolio for a bull spread
with puts strategy consists of a long put option and a short put option with
different strike prices. The strike price of the short is higher than the strike price
of the long. Mathematically this becomes:

K short put > K long put

• The payoff of the long put decreases with an increasing spot price of the underlying
at maturity and becomes zero at the strike price of the long put. The payoff of
the short put increases with an increasing spot price of the underlying at maturity
and becomes zero at the strike price of the short put. The payoff of the portfolio
will therefore start to increase when the spot price of the underlying at maturity
overtakes the strike price of the long put option. This increase in the payoff will
halt when the spot price of the underlying at maturity overtakes the strike price
of the short put option. The figure below illustrates our explanation.

0 50 100 150 200−
10

0
−

50
0

50
10

0

Spot price of underlying at maturity

P
ay

of
f o

f o
pt

io
n 

po
si

tio
n 

at
 m

at
ur

ity

long put
short put

0 50 100 150 200−
10

0
−

50
0

50
10

0

Spot price of underlying at maturity

P
ay

of
f o

f o
pt

io
n 

st
ra

te
gy

 a
t m

at
ur

ity

Bull spread with put options

Figure 8.7: Payoff diagram for a long (red) and short (blue) put option (left) and payoff
diagram for a bull-spread with puts option strategy (right).

• This option strategy is used by bullish investors who expect a rise in the value of
the underlying asset, but want to limit their downside risk.

• Our investor expects a rise in the value of the underlying, and therefore sells put
options on the underlying. In doing so he receives an option premium. However,
the investor wants to limit the downside potential on the put options he sold.
To do this, he will enter long put options with a lower exercise price. The long
option compensates for the negative payoff of the short option as long as the spot
price at maturity of the underlying is smaller than the exercise price of the long
option. The investor thus limits his downside risk while generating income via
the option premium.
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8.4.3 Bear-spread with calls

• The portfolio for a bear spread with calls strategy consists of a short call option
and a long call option with different strike prices. The strike price of the short is
lower than the strike price of the long. Mathematically this becomes:

K short call < K long call

• The payoff of the short call starts to decrease when the spot price of the underlying
at maturity overtakes its strike price K short call. The payoff of the long call starts
to increase when the spot price of the underlying at maturity overtakes its strike
price K long call. The payoff of the portfolio will therefore start to decrease when
the spot price of the underlying at maturity overtakes the strike price of the short
call option. This increase in the payoff will be nullified by the long call option
when the spot price of the underlying at maturity overtakes the strike price of
the long call option. The figure below illustrates our explanation.
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Figure 8.8: Payoff diagram for a long (red) and short (blue) call option (left) and payoff
diagram for a bear-spread with calls option strategy (right).

• This option strategy is used by bearish investors who expect a decline in the
value of the underlying asset, but want to limit their downside risk.

• Our investor expects a decline in the value of the underlying, and therefore
sells call options on the underlying. In doing so he receives an option premium.
However, the investor wants to limit the downside potential on the call options
he sold. To do this, he will enter long call options with a higher exercise price.
The long option nullifies the negative payoff of the short option as long as the
spot price at maturity of the underlying is greater than the exercise price of the
long option. The investor thus limits his downside risk while generating income
via the option premium.
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8.4.4 Bear-spread with puts

• The portfolio for a bear spread with puts strategy consists of a short put option
and a long put option with different strike prices. The strike price of the short is
lower than the strike price of the long. Mathematically this becomes:

K short put < K long put

• The payoff of the short put option increases with the spot price of the underlying
at maturity until the spot price of the underlying at maturity is equal to the
strike price of the short put option. The payoff of the short put option then
becomes zero. The payoff of the long put option decreases with the spot price
of the underlying at maturity until the spot price of the underlying at maturity
is equal to the strike price of the long put option. The payoff of the long put
option then becomes zero. Because the strike price of the short put option is
smaller then the strike price of the long put option, the payoff of the portfolio
will decrease between both strike prices.

0 50 100 150 200−
10

0
−

50
0

50
10

0

Spot price of underlying at maturity

P
ay

of
f o

f o
pt

io
n 

po
si

tio
n 

at
 m

at
ur

ity

long put
short put

0 50 100 150 200−
10

0
−

50
0

50
10

0

Spot price of underlying at maturity

P
ay

of
f o

f o
pt

io
n 

st
ra

te
gy

 a
t m

at
ur

ity

Bear spread with put options

Figure 8.9: Payoff diagram for a long (red) and short (blue) put option (left) and payoff
diagram for a bear-spread with puts option strategy (right).

• This option strategy is used by bearish investors who expect a decline in the
value of the underlying asset between two boundaries. The lower boundary is
equal to the strike price of the short put option while the upper boundary is
equal to the strike price of the long put option.

• Our investor expects a decline in the value of the underlying, but not below
a certain price. He will therefore first buy the full downside potential of the
underlying with the long put option and afterwards sell part of the potential to
other investors via the short put option.

191



8.4.5 Ratio spreads and ratio backspreads

• Ratio spreads and ratio backspreads provide asymmetry in the payoff profile.
This is achieved by altering the ratio of the positions in the portfolio. A ratio
spread is a strategy where an investor enters into more short positions than long
positions. A ratio backspread is a strategy where an investor enters into more
long positions than short positions.

• Consider the bull and bear spread option strategies we saw earlier. We can add
either a long option or a short option to these portfolios. This does not yield a
useful option strategy in all cases. In what follows we show what strategies are
useful.

– Consider the bull spread with calls option strategy. In that case, the strike
price of the short was higher than the strike price of the long. A portfolio
that incorporates an additional short call option is called a call ratio spread.

Portfolio = 1 · C long
KL

+ 2 · C short
KH

– Consider the bear spread with calls option strategy. In that case, the strike
price of the short was lower than the strike price of the long. A portfolio that
incorporates an additional long call option is called a call ratio backspread.

Portfolio = 2 · C long
KH

+ 1 · C short
KL

– Consider the bear spread with puts option strategy. In that case, the strike
price of the short was lower than the strike price of the long. A portfolio
that incorporates an additional short put option is called a put ratio spread.

Portfolio = 1 · P long
KH

+ 2 · P short
KL

– Consider the bull spread with puts option strategy. In that case, the strike
price of the short was higher than the strike price of the long. A portfolio that
incorporates an additional long put option is called a put ratio backspread.

Portfolio = 2 · P long
KL

+ 1 · P short
KH

• The payoff diagrams for all these strategies are shown on the next page.
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Figure 8.10: From left to right and top to bottom we see the payoff diagrams for a
call-ratio spread, a call ratio backspread, a put ratio spread and a put
ratio backspread.

8.4.6 Butterfly call spread

• Consider the call ratio spread option strategy. The portfolio consisted of one long
call option with a low strike price and two short options with a high strike price.
Mathematically:

Portfolio = 1 · C long
KL

+ 2 · C short
KH

• The payoff profile possesses some asymmetry in the right tail. An investor might
want to remove this tail. This can be done by adding another long call option
to the portfolio. We choose the strike price of this long call option in such a
way that the the distance between the strike price of the original long and the
short options is equal to the distance between the original long and the new long
option. Mathematically:

K long old −Kshort = K long new −K long old
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• The payoff profile of a butterfly call spread is shown in the figure below together
with the payoff profiles of the components of the portfolio. Notice that the payoff
diagram is always non-negative. This implies that an investor will need to pay a
premium to set up a butterfly call spread.

0 50 100 150 200−
10

0
−

50
0

50
10

0

Spot price of underlying at maturity

P
ay

of
f o

f o
pt

io
n 

at
 m

at
ur

ity

Payoff long call low strike price
Payoff long call high strike price
Payoff short call

0 50 100 150 200−
10

0
−

50
0

50
10

0

Spot price of underlying at maturity

P
ay

of
f o

f o
pt

io
n 

st
ra

te
gy

 a
t m

at
ur

ity

Butterfly call spread

Figure 8.11: Payoff diagrams for a butterfly call spread (right) and its components
(left).

8.4.7 Condor spread

• Consider a butterfly call spread where the different options have a different strike
price:

Portfolio = C long
K1

+ C long
K2

+ C short
K3

+ C short
K4

• The strike prices are chosen in such a way that the following statement holds:

K2 −K1 = K4 −K2

• The figure on the following page shows the resulting payoff diagram together
with the payoff profiles of the components of the portfolio.
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Figure 8.12: Payoff diagrams for a condor spread (bottom) and its components (top).
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8.4.8 Box spread

• Consider a portfolio that combines a bull call spread and a bear put spread. This
portfolio consists of a long call, a short call, a long put and a short put option:

Portfolio = C long
K1

+ C short
K2

+ P long
K3

+ P short
K4

• For the strike prices, the following statements hold:

K2 > K1

K3 > K4

• A box spread uses a matching bull call spread and bear put spread. Id est, the
lower strike price and higher strike price in both option strategies are equal to
one another.

K2 = K3

K1 = K4

• The following table shows the payoff for each component of the box spread option
strategy and the payoff of the entire strategy.

Position Cost ST < KL KL < ST < KH ST > KH

Long call −P (CL) 0 ST −KL ST −KL

Short call +P (CH) 0 0 KH − ST

Long put −P (PH) KH − ST KH − ST 0

Short put +P (PL) ST −KL 0 0

Total cashflow P (CH) + P (PL) KH −KL KH −KL KH −KL

−Pr(CL)− Pr(PH)

• The resulting payoff function is flat. We therefore created a synthetic zero bond.
It is thus even possible to create the payoff profile of a bond with an option
portfolio.

• An arbitrageur might want to check if the implied interest rate in the box spread
is higher than the market interest rate. If this is the case, he could seek to attract
funds in the market and set up a synthetic bond using the box spread option
strategy.
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Figure 8.13: Payoff diagrams for a box spread (bottom) and its components (top).
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8.5 Combinations

It is also possible to combine options of different classes and even options on different
underlying assets. We will only consider combining options of different classes. Here,
we discuss four types of option strategies:

1. Straddles. A straddle is an option strategy where the number of put options
is equal to the number of call options. The strike price of the put and the call
options are the same.

2. Strangles. A strangle is an option strategy where the number of put options is
equal to the number of call options. The strike price of the put and the call
options are not the same.

3. Strips. A strip is an option strategy where the portfolio consists of two long put
options and one long call option. The strike price of the put options and the call
option are the same.

4. Straps. A strap is an option strategy where the portfolio consists of two long call
options and one long put option. The strike price of the put option and the call
options are the same.
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Figure 8.14: Payoff diagrams for a long strangle (left) and its components (right).
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Figure 8.15: Payoff diagram for a long straddle (right) and its components (left).
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Figure 8.16: Payoff diagrams of a strip (right) and its components (left).
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Figure 8.17: Payoff diagrams for a strap (right) and its components (left).
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8.6 Reverse engineering

Until now, we combined different options into portfolios. We called these portfolios
option strategies. The result is a payoff profile. In practice however, an investor wants
to construct a payoff profile using different options. The payoff profile is then given
but the composition of the portfolio is unknown. The goal is then to decompose the
payoff profile into different options. Id est we want to construct a portfolio for a given
payoff profile. We discern four different basic option strategies. These strategies are:

1. The long call.

2. The short call.

3. The long put.

4. The short put.

Options are very unique financial instruments because the slope of the payoff profile
changes with the spot price of the underlying at maturity. Each of these strategies have
a single kink in their payoff profile. The kink changes the slope of the payoff profile.
When the option is out of the money the slope is equal to zero When the option is in
the money, the slope is equal to one.

We can thus characterize the four basic option strategies by the sequence of slopes in
their payoff profile. For example, the long call option is characterized by the sequence
(0,+1) while the short call option is characterized by the sequence (0,−1). The long
put option is characterized by the sequence (−1, 0) while the short put is characterized
by the sequence (+1, 0). Using these four different basic option strategies, we can
construct the payoff profile for any and every possible option strategy. The table below
shows the sequence that characterizes each basic option strategy.

Basis strategy ST < K ST > K

Long call 0 +1

Short call 0 −1

Long put −1 0

Short put +1 0
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8.6.1 The long bull-spread

• First we consider the bull spread option strategy. The payoff profile is given in
the figure below and can be characterized by the sequence (0,+1, 0). Id est the
slope of the payoff profile is zero at first, then plus one and finally zero again.
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Figure 8.18:

• We can reverse engineer the option portfolio with call options by moving from
left to right in the payoff profile.

– A long call with a strike price of KL gives the following sequence.

ST < KL KL < ST < KH ST > KH

Target 0 +1 0

Long call 0 +1 +1

Difference 0 0 +1

– We add a short call with strike price KH .

ST < KL KL < ST < KH ST > KH

Target 0 +1 0

Long call 0 +1 +1

Short call 0 0 −1

Difference 0 0 0
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• We will now try to reverse engineer the bull spread using put options. We can do
this by moving from right to left in the payoff profile.

– A short put with a strike price of KH gives the following sequence.

ST < KL KL < ST < KH ST > KH

Target 0 +1 0

Short put +1 +1 0

Difference +1 0 0

– Adding a long put with strike price KL to the portfolio gives us the sequence
below.

ST < KL KL < ST < KH ST > KH

Target 0 +1 0

Short put +1 +1 0

long put −1 0 0

Difference 0 0 0

• There is yet another way to construct this option strategy. Note that this strategy
is not a spread.

– First, we use a long forward.

ST < KL KL < ST < KH ST > KH

Target 0 +1 0

Long forward +1 +1 +1

Difference +1 0 +1

– Next, we add a long put with a strike price of KL.

ST < KL KL < ST < KH ST > KH

Target 0 +1 0

Long forward +1 +1 +1

Long put −1 0 0

Difference 0 0 +1
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– Finally, we add a short call with a strike price of KH .

ST < KL KL < ST < KH ST > KH

Target 0 +1 0

Long forward +1 +1 +1

Long put −1 0 0

Short call 0 0 −1

Difference 0 0 0

– We can choose the strike prices of the options in such a way that they cancel
each other out. The option strategy can then be entered without incurring
a cost.

8.6.2 The short butterfly spread

• We now consider the short butterfly spread whose payoff profile is given in the
figure below and by characterized by the sequence (0,-1,+1,0).

• We can reverse engineer the option portfolio with, for example call options. As
before, we start on the left side of the payoff profile and proceed to the right side
of the payoff profile.

– We start by adding a short call option with strike price KL.

ST < KL KL < ST < KM KM < ST < KH ST > KH

Target 0 −1 +1 0

Short call 0 −1 −1 −1

Difference 0 0 +2 +1

– Next, we use two long call options with strike price KM .

ST < KL KL < ST < KM KM < ST < KH ST > KH

Target 0 −1 +1 0

Short call 0 −1 −1 −1

Long call 0 0 +1 +1

Long call 0 0 +1 +1

Difference 0 0 0 +1
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– Finally, we add a short call option with strike price KH .

ST < KL KL < ST < KM KM < ST < KH ST > KH

Target 0 −1 +1 0

Short call 0 −1 −1 −1

Long call 0 0 +1 +1

Long call 0 0 +1 +1

Short call 0 0 0 −1

Difference 0 0 0 0

8.6.3 Other option strategies

• Some option strategy profiles are difficult to replicate using the method that was
used in the previous examples. This is the case when there are discrete jumps
in the payoff profile. It is impossible to model these payoff profiles with plain
vanilla options.

• To models these strategies, we need exotic options. Binary options are an example
of such exotic options. A binary option either provides a fixed cashflow or it does
not provide any cashflow. These binary options can be used to model discrete
jumps in the payoff profile. The figure below provides the payoff profiles of such
binary options.
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Figure 8.19: Payoff profiles for the binary call options (left) and the binary put options
(right).

• Asian options are another example of exotic options. A normal option has a
payoff function that compares the strike price with the price of the underlying at
maturity. An Asian option compares the average price of the underlying during
a period before the maturity with the strike price. An Asian option is therefore
less volatile than a normal option.
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9 Arbitrage restrictions

The value and thus the price of an options is restricted to some boundaries. In this
chapter we will derive these boundaries by looking for the option prices where arbitrage
opportunities arise.

9.1 The European call without dividends

• First, we consider the case of the European call option without dividends during
the lifetime of the option. We search for restrictions on the option price. The
price of an option at a given point in time is naturally the value of the option at
that time. Therefore we denote the price of the long call option at time t with:

f long call
t

• We will now go over the different restrictions we can impose on the option price
of the long call:

1. The option price has to be smaller than the price of the underlying. It is
clear that no investor is be willing to pay a higher price for the European
call option than for the underlying. Mathematically this becomes:

f long call
t ≤ St

2. The option price has to be greater than or equal to zero. If a European
call option would have a negative value, an investor could acquire the
option and hold onto it until maturity. The investor has the right and
thus no obligation to exercise the option. If the option is not in the money
at maturity, the investor will let the option expire without any negative
consequences. Mathematically this restriction becomes:

f long call
t ≥ 0

3. The option price has to be greater than or equal to the forward price. Notice
that the payoff profile of a long forward contract and a European call option
coincide for ST > K. However, the long call option clearly dominates the
long forward. This is because the payoff of the long forward can become
negative. This means that the value of the long call option has to be at
least equal to the value of the long forward.
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Mathematically, this restriction becomes:

f long fw.
t ≤ f long call

t

St −DP · e−r·(T−t) ≤ f long call
t

St −K · e−r·(T−t) ≤ f long call
t

If this restriction does not hold, arbitrage opportunities arise. Suppose that
the price of the long call option at time t is smaller than the price of the
forward contract at the same time:

f long fw.
t > f long call

t

St −K · e−r·(T−t) > f long call
t

St −K · e−r·(T−t) − f long call
t > 0

Consider an investor who, at time t0, goes short in the underlying asset,
uses the proceeds to invest the discounted value of the strike price and to
go long in the call option. The equation above tells us that this strategy
yields an immediate positive cashflow. I.e. the proceeds from going short in
the underlying are greater than the present value of the strike price and the
option premium (i.e. the value of the option) combined.

However, we need to make sure that this positive cashflow is not nullified at
maturity. We therefore consider the payoff of this portfolio at the maturity
of the option contract. The table below displays all possible cashflows of the
portfolio at maturity. It is clear that we do not lose the positive cashflow of
time t0 at maturity T .

Arbitrage portfolio T : K > ST T : K < ST

Short spot −ST −ST

Investment +K +K

Long call option 0 ST −K

Total cashflow K − ST 0

• In summary, a European call option, in the non-dividend case has:

– An upper bound. The price of the call option cannot be greater than the
spot price of the underlying. Mathematically:

f long call
t ≤ St

– A lower bound. The price of the call option cannot be smaller than zero.
Mathematically:

f long call
t ≥ 0

208



– A right bound. The price of the call option always has to be greater than
the forward price. Mathematically:

f long call
t ≥ f long fw.

t

• The figure below depicts the payoff of the long forward and the long spot together
with the zero line. The area to the right of the long spot payoff, to the left of
the long forward payoff and above the zero line is the area to which the long call
prices are restricted.
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Figure 9.1: Arbitrage restrictions on the European-style long call option in the case of
no dividends.

9.2 The European call with discrete dividends

• Next, we consider the case of the European call option, this time with dividends
during the lifetime of the option.

• The upper bound and the lower bound are not affected by the dividend. An
investor is still not willing to pay a higher price for the option than for the
underlying asset. The value of the long option must be greater than zero because
the long option grant the investor a right. The investor can therefore choose to
let the option expire; in doing so he avoid any possible negative consequences.
These restrictions can mathematically be expressed as:

f long call
t ≤ St

f long call
t ≥ 0

• The third restriction on the option price stated that the price of the option
should always be greater than or equal to the forward price. However, as we
already know, the value of a forward contract is affected by any possible income
the underlying asset provides during the lifetime of the forward contract. We
corrected the value of the forward by deducting the sum of the present value of
each income stream within the lifespan of the forward contract.
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• In this case, we apply the same reasoning. The price of the call option then has
to be greater than or equal to the value of the forward; where the value of the
forward is corrected for the incoming payments during the lifetime of the option
contract. Mathematically, this becomes:

f long call
t ≥ St −K · e−r·(T−t) − PV (D)

≥ St −K · e−r·(T−t) −
n∑

i=1

Di · e−r·(T−ti)

• If this restriction does not apply, arbitrage possibilities arise. Suppose that the
value of the option is smaller than the value of the forward, corrected for the
incoming payments during the lifetime of the option contract. Mathematically:

f long call
t ≤ St −K · e−r·(T−t) − PV (D)

0 ≤ St −K · e−r·(T−t) − PV (D)− f long call
t

Consider an investor who, at time t0, goes short in the underlying asset, uses the
proceeds to invest the discounted value of the strike price and the present value
of all incoming payments during the lifetime of the option and goes long in the
call option. The equation above tells us that this strategy yields an immediate
positive cashflow.

• Suppose the underlying provides a single income payment during the lifetime of
the long option contract at time t. We can study the cashflows of such a portfolio
during its lifetime in the table below. From this it is clear that at no point in
time the strategy yields a negative cashflow.

If the restriction would be violated, an investor could easily set up an arbitrage
portfolio that immediately grants him a positive cashflow. There is even a
possibility of another positive cashflow at maturity.

Arbitrage portfolio t0 t T : K > ST T : K < ST

Short spot +St0 −Dt −ST −ST

Investment −K · e−r·(T−t) 0 +K +K

Investment −PV (Dt) +Dt 0 0

Long call option −f long call
t0 0 ST −K 0

Total cashflow > 0 0 > 0 0
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• In summary, the restrictions from before still apply. In the case where the
underlying provides one or more income payments the value of the long call
option must be higher than the value of the long forward contract, corrected for
the incoming payments during the lifetime of the option contract.

The incoming payments are discounted and subtracted from the value of the
forward contract. The value of the forward contract is therefore decreased. This
corresponds to the payoff profile of the long forward being shifted to the right.
The area to which the prices of the long call option are restricted is thus enlarged.
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Figure 9.2: Arbitrage restrictions on the European-style long call option, in the case of
dividends.

9.3 The American call without dividends

• We now introduce the issue of the time when the option can be exercised. We
consider an American long call option. This means the option can be exercised
during the entire lifetime of the option.

• The first two restrictions on the value of the option remain valid. The value of
the long call option still cannot be greater than the value of the underlying at
that point in time. It is also clear that the value of a long call option cannot
be less than zero because of the aforementioned reasons. Mathematically, this
restrictions were expressed in the following manner:

f long call
t ≤ St

f long call
t ≥ 0

• We take a closer look at the relationship between the European call option and
the American call option. The American call option can be exercised at the
maturity day, just like the European call option. The American call option can
however also be exercised during all the other days, leading up to the maturity
of the option. We can easily see that the value of the American call should at
least be equal to the value of the European call.
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• We conclude that the value of the American call cannot be less than the value of
the European call. Mathematically, this becomes:

f Am. long call
t ≥ f Eur. long call

t

• The relationship with the value of the forward contract is therefore also straight-
forward:

f Am. long call
t ≥ f Eur. long call

t ≥ St −K · e−r·(T−t)

• If this restriction does not hold, it is again possible to proof that arbitrage
opportunities arise. Suppose that the value of the long American call option is
smaller than the value of the long forward. Mathematically:

f Am. long call
t ≤ St −K · e−r·(T−t)

0 ≤ St −K · e−r·(T−t) − f Am. long call
t

This corresponds to an investor who, at time t0, goes short in the underlying
asset, uses the proceeds to invest the discounted value of the strike price and to
go long in the call option. The equation above tells us that this strategy yields
an immediate positive cashflow.

We can study the cashflows of such a portfolio during its lifetime in the table
below. From this it is clear that at no point in time the strategy yields a nett
negative cashflow. If the restriction is violated, an investor could easily set up
an arbitrage portfolio that immediately grants him a positive cashflow. There is
even a possibility of another positive cashflow at maturity.

Arbitrage portfolio t0 T : ST < K T : ST > K

Short spot +St0 −ST −ST

Investment −K · e−r·(T−t) +K +K

Long call option −f Am. long call
t0 0 ST −K

Total cashflow > 0 ≥ 0 0

• However, we silently assumed that the option was exercised at maturity. The
major difference with the European style call option is that the investor can
decide to prematurely exercise his option. Whether there is a cashflow at maturity
is therefore uncertain. Suppose the investor exercises the option between time t0
and T . If that were the case, he would receive the intrinsic value of the option.
The intrinsic value of the option the difference between the spot price of the
underlying at that point in time and the strike price. It is the value that would
be received by exercising the option. Mathematically, this becomes:

f Am. long call
t = St −K
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• Consider the restriction with regard to the value of the long call option, which is
given by:

f Am. long call
t ≥ St −K · e−r·(T−t)

It is clear that by exercising the option prematurely, the investor would destroy
some value of the option. The investor therefore has no incentive to exercise the
option early and will thus wait until maturity.

• All of this implies that an American call option, in the case where there are no
dividends provided by the underlying value during the lifetime of the option, will
never be exercised early. Exercising the call option early would destroy value of
the option. This makes the American style call option equivalent to the European
style call option. We can therefore use a pricing model for a European style call
options immediately on American style call options. Note that this is only valid
in the case of no dividends.

• Graphically, nothing changes with respect to the case of the European call.

9.4 The American call with discrete dividends

• At this point we already know the different restrictions for the value of the long
call option. The restrictions in the case of the American call option with discrete
dividends follow naturally from the previously stated restrictions. The restrictions
for the American-style long call option in the case of dividends are:

1. The value of the call option cannot be negative.

f Am. long call
t ≥ 0

2. The value of the call option cannot be higher than the value of the underlying.

f Am. long call
t ≤ St

3. The value of the American-style call option is greater or equal to the value
of the European-style call option.

f Am. long call
t ≥ f Eur. long call

t

4. The value of the call option is at least equal to the value of the long
forward, corrected for the incoming payments during the lifetime of the
option contract.

f Am. long call
t ≥ f long forward

t

f Am. long call
t ≥ St − PV (D)−K · e−r·(T−t)

• We consider restriction four. It is again possible to proof that arbitrage op-
portunities arise when this restriction does not hold. Suppose that the value
of the long American call option is smaller than the value of the long forward.
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Mathematically:

f Am. long call
t ≤ St − PV (D)−K · e−r·(T−t)

0 ≤ St − PV (D)−K · e−r·(T−t) − f Am. long call
t

• An investor could set up an arbitrage portfolio by going short in the underlying.
He can use the proceeds to invest the present value of the strike price and the
sum of the present value of each future income stream during the lifetime of
the option contract and to go long in the call option. This strategy would yield
an immediate positive cashflow. We can study the cashflows of this portfolio
throughout its lifetime. This shows us that the positive cashflow at time t0 is not
annulled during the lifetime of the portfolio.

Arbitrage portfolio t0 t T : ST < K T : ST > K

Short spot +St0 −D −ST −ST

Investment −K · e−r·(T−t) 0 +K +K

Investment −PV (D) +D 0 0

Long call option −f Am. long call
t0 0 ST −K

Total cashflow > 0 0 ≥ 0 0

• The arbitrage only works when the investor does not exercise the call option
before maturity. However, this does not constitute a problem. We have shown
that arbitrage is indeed possible when the restriction is not fulfilled. A situation
where the restriction is not met can therefore not prevail in a well functioning
market because of arbitrage opportunities.

Id est, the value of the American-style long call option in the case of dividends,
needs to be less than the value of the long forward adapted for the incoming
payments. If this is not the case, arbitrage is possible. In other words, the early
exercise feature does not influence the restriction.

• Graphically, nothing changes with respect to the case of the European call with
discrete dividends. Id est the restriction with regard to the forward contract is
less strict. The right boundary for the value of the call option shifts to the right.

• We can ask ourselves whether there are situations where exercising the option
prematurely would be justified.

– As we already know, the value of the long call option is greater than or
equal to the value of the long forward. Mathematically:

fAm. long call
t ≥ f long forward

t

fAm. long call
t ≥ St −K · e−r·(T−t) − PV (D)
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– When the option is exercised, the payoff is equal to the difference between
the spot price of the underlying and the exercise price. This quantity is
called the intrinsic value of the call option. Mathematically:

f Am. long call
t = St −K

– We want to determine in what cases the long call option would be exercised.
Id est in what cases the intrinsic value of the call option would exceed the
lower boundary for the value of the call option. We rewrite this conditional
statement, in terms of the the dividend. Mathematically:

St −K > St −K · e−r·(T−t) − PV (D)

PV (D) > K −K · e−r·(T−t)

– As we can see, the intrinsic value of the long call option exceeds the lower
boundary for the value of the long call option when the present value of the
dividends is greater than the opportunity cost of exercising the option.

– The opportunity cost is equal to the difference between the strike price and
the discounted strike price. This is the interest I that is earned on the cash
amount of the strike price K between time t and T . By not exercising the
option, the long can hold onto the cash amount of the strike price and earn
interest on it. Mathematically:

TV long call
t = K −K · e−r·(T−t)

= K − PV (K)

= I

– In conclusion, an investor might be tempted to exercise the option early,
because it gives him the opportunity to capture the dividend. The option
itself does not give the investor access to the dividend.

– The investor compares the time value of the option with the present value
of the dividend. If the present value of the dividend is greater than the time
value of the option, the investor will exercise the option. If the present value
of the of the dividend is less than the time value of the option, the investor
will not exercise the option. Mathematically, this becomes:{∑n

i=1Dti · er·(ti−t) < K −K · e−r·(T−t) → exercise∑n
i=1Dti · er·(ti−t) > K −K · e−r·(T−t) → do not exercise

– Exercising the option will be postponed until the cum dividend day. In
doing so the opportunity cost is minimized. If the option would be exercised
earlier, the lost time value would be greater.
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9.5 The European put option without dividends

• Next, consider the European put option. The first two restrictions are the same
as for the long call option. I.e. the value of the long put option cannot be greater
than the value of the underlying and the value of the long put option should be
greater than zero. Mathematically, this becomes:

f long put
t ≥ 0

f long put
t ≤ St

• Furthermore, it is clear that the value of the European put cannot be higher
than the discounted value of the strike. This is because the strike price is also
the maximal payoff of the long put option at maturity. Mathematically, this
becomes:

f long put
t ≤ K · e−r·(T−t)

• The value of a European put option must also be greater than or equal to the
value of the short forward. If this is not the case, arbitrage opportunities arise.
Mathematically, this becomes:

f long put
t ≥ f short fw.

t

≥ K · e−r·(T−t) − St

• If the last restriction does not holds, arbitrage opportunities arise. Suppose
that the value of the European put is less than the value of the short forward.
Mathematically, this corresponds to the following statements:

f long put
t < K · e−r·(T−t) − St

0 < K · e−r·(T−t) − St − f long put
t

In that case an investor could set up an arbitrage portfolio by borrowing the
present value of the strike price. He could then use the proceeds to enter a long
put option and to go long in the underlying The equation above tells is that
this strategy provides an immediate nett positive cashflow. We can study the
cashflows of this portfolio throughout its lifetime to see whether the positive
cashflow is annulled in the future. This is clearly not the case which means
arbitrage is possible if the restriction does not hold true.

Arbitrage portfolio t0 T : ST < K T : ST > K

Long spot −St0 +ST +ST

Investment +K · e−r·(T−t) −K −K

Long put option −f long put
t0 K − ST 0

Total cashflow > 0 0 > 0
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• Notice that the lower bound of the long put option is below the intrinsic value of
the option. This was not the case for the long call option. From this we derive
that the time value for put options can actually be negative. In that case, the
value of the put option in the financial markets will be below the intrinsic value.
This is because interest can be earned on K. Exercising later would negate this
interest partially. When the long put is at its maximum potential, holding out
would not make sense, as the option holder would just lose out on interest.

However, it is important to notice that this is only a possibility. The lower
boundary allows for such cases, however in most cases the time value of the
option is positive and the intrinsic value of the option will be lower than the
value of the option on the financial markets. Mathematically, this becomes:

f long put
t ≥ K · e−r·(T−t) − St

K − St > K · er·(T−t) − St

• Graphically, the value of the long put option is limited to the area enclosed by
the line that represents the value of the underlying and the line that represents
the value of the short forward.
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Figure 9.3: Arbitrage restrictions on the European-style long put option, in the case of
no dividends.
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9.6 The European put with discrete dividends

• We now consider the European put option in the case of discrete income payments.
The first three restrictions are the same as for the case without dividends. I.e. the
value of the long put option cannot be greater than the value of the underlying,
the value of the long put option should be greater than zero and the value of the
European put option cannot be higher than the discounted value of the strike.
Mathematically, this becomes:

f long put
t ≥ 0

f long put
t ≤ St

f long put
t ≤ K · e−r·(T−t)

• The fourth restriction stated that the value of the European put had to be greater
than or equal to the value of the short forward. However, in the case of the
discrete dividends, the value function of the short forward has to take into account
these income payments. The adapted restriction is given by:

f long put
t ≥ K · e−r·(T−t) − St + PV (D)

• If this restriction does not holds, arbitrage opportunities arise. Suppose that the
value of the European put is less than the value of the short forward. Mathemat-
ically, this corresponds to the following statements:

f long put
t < K · e−r·(T−t) − St + PV (D)

0 < K · e−r·(T−t) − St + PV (D)− f long put
t

An investor can set up an arbitrage portfolio by borrowing the present value of
the strike price and the present value of any future dividend payments. The can
use the proceeds to go long in the underlying and to go long in a put option. The
equation above tells us that these operations provide an immediate nett positive
cashflow. To see whether this positive cashflow is annulled in the future, we study
the cashflows of the portfolio in the future. It is clear that this is not the case.
This means that arbitrage is possible whenever the restriction does not hold true.

Arbitrage portfolio t0 t T : ST < K T : ST > K

Long spot −St0 +D +ST +ST

Investment +K · e−r·(T−t) 0 −K −K

Investment +PV (D) −D 0 0

Long put option −f long put
t0 0 K − ST 0

Total cashflow > 0 0 0 > 0
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• Graphically, the value of the long put option is limited to the area enclosed by
the line representing the value of the underlying and the line that represents the
value of the short forward which is adjusted for the dividend payments during
the lifetime of the option. The line representing the value of the short forward is
shifted to the right. This means that the restriction on the long put option is
less strict in the case of dividend payments.
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Figure 9.4: Arbitrage restrictions on the European-style long put option, in the case of
dividends.

9.7 The American put option without dividends

• Now we discus the case of the American style long put option. The first three
restrictions are the same as for the European long put option. I.e. the value
of the long put option cannot be greater than the value of the underlying and
the value of the long put option should be greater than zero and the value of
the long put should not be greater than the present value of the strike price.
Mathematically, this becomes:

f Am. long put
t ≥ 0

f Am. long put
t ≤ St

f Am. long put
t ≤ K · e−r·(T−t)

• The fourth restriction on the value of the long American put option is somewhat
different from the European case. It is clear that the value of the option cannot
be lower than the intrinsic value of the option because the option can be exercised
at any point in time. If the value of the American put option is lower than its
intrinsic value, the option would be exercised immediately. Mathematically, this
restriction becomes:

f Am. long put
t ≥ K − St
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• As we already discussed, the value of the long put option has to greater than
or equal to the value of the short forward. However, we can easily see that the
previous restriction is less strict than this restriction. This restriction is therefore
of no importance for the long American put option. Mathematically:

f Am. long put
t ≥ K · e−r·(T−t) − St

K − St > K · e−r·(T−t) − St

• As the lower boundary for the value of the long put option in the market is equal
to the intrinsic value of the long put in the market, early exercise will not be
useful. The time value of the option has to be greater or equal to zero. The
exception to this rule is an option where the remaining upside potential is zero
or almost zero. The time value of the option would then be equal to the interest
rate that is earned on the proceeds of the payoff of the option. Holding onto the
option would then be of no further benefit.

• Graphically, the value of the American-style long put is limited to the area
enclosed by the lines representing the intrinsic value of the long put option and
the line representing the spot price of the underlying.
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Figure 9.5: Arbitrage restrictions on the American-style long put option, in the case of
no dividends.
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9.8 The American put option with dividends

• We now consider the case of the American put option on an underlying that
provides dividends during the lifetime of the option. The restrictions are the
same as for the case of the American-style long put option without dividends. Id
est, the value of the long put cannot be greater than the value of the underlying,
the value of the long put cannot be greater than the present value of the strike
price, the value of the long put should be greater than zero and the value of the
long put option cannot be greater than the value of the short forward, adjusted
for the dividend payments. The value of the long put also cannot be less than its
intrinsic value. Mathematically, this becomes:

f long put
t ≤ St

f long put
t ≤ K · e−r·(T−t)

f long put
t ≥ 0

f long put
t ≥ PV (K)− St + PV (D)(
f long put
t ≥ K − St

)
• We are interested in the case where the intrinsic value of the option is greater than
the value of the short forward, adjusted for the dividend payments. This shows us
when it would be beneficial to exercise the option prematurely. Mathematically:

f Long put
t ≥ K · e−r·τ − St + PV (D) +

[
K −K · e−r·τ]

≥ K − St + PV (D)

K − St + PV (D) < K − St

PV (D) < 0
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• Graphically, the value of the American-style put option is restricted to the area
enclosed by the line representing value of the underlying and either the line
representing the value of the short forward, or the ling representing the intrinsic
value of the option.
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Figure 9.6: Arbitrage restrictions on the American-style long put option, in the case of
dividends.
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10 Put call parity

10.1 The European put call parity

• We first take a look at the put-call parity in the case of European-style options.
From the graph below, it is easy to see that the following relation must hold:

f long call
t − f long put

t = f long forward
t

= St −K · e−r·(T−t)

f long call
t +K · e−r·(T−t) = St + f long put

t
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Figure 10.1: The payoff profile of a long call option, a short put option and the
corresponding long forward contract.

• The proof of this relationship is again based on the no-arbitrage assumption. If
the relationship does not hold, it is possible to set up aa arbitrage strategy.

– Suppose first that the following holds true:

f long call
t +K · e−r·(T−t) ≥ St + f long put

t

St + f long put
t −K · e−r·(T−t) − f long call

t ≥ 0
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– It is then possible to set up strategy that provides an immediate net positive
cashflow. This portfolio consists of a short put option, a long call option. a
short spot position and an investment with a principal amount of the present
value of the strike price. We now look at the cashflows of this portfolio
throughout its lifetime in more detail. To ensure that the cashflow at time
t0 is not annulled in the future. This is clearly not the case.

Arbitrage portfolio t0 T : ST < K T : ST > K

Short spot +St0 −ST −ST

Investment −K · e−r·(T−t0) +K +K

Long call option −f long call
t0 0 ST −K

Short put option +f short put
t0 ST −K 0

Total cashflow > 0 0 0

– Suppose now that the following holds true:

f long call
t +K · e−r·(T−t) ≤ St + f long put

t

0 ≤ f long call
t +K · e−r·(T−t) − St − f long put

t

– It is again possible to set up an arbitrage portfolio that provides an immediate
positive net cashflow. This time, the portfolio consists of a short call option,
along put option, a long spot position and a loan with a principal amount
equal tot the present value of the strike price. We can again take a more
detailed look at the cashflows of this strategy throughout its lifetime to
make sure that the positive cashflow at time t0 is not annulled in the future.
This is clearly not the case.

Arbitrage portfolio t0 T : ST < K T : ST > K

Long spot −St0 ST ST

Loan K · e−r·(T−t0) −K −K

Short call option f long call
t0 0 K − ST

Long put option −f short put
t0 K − ST 0

Total cashflow > 0 0 0

• We conclude that the put call parity must hold, otherwise arbitrage opportunities
arise. Arbitrage opportunities can exist, but cannot persist.
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• We can generalize the European put call parity for the case of dividends. In that
case, the value of the long forward has to take into account the income streams
of the underlying asset. We can easily derive this more general relationship. If
this relationship does not hold, arbitrage opportunities arise. The proof for this
is very similar to the ones above.

f long call
t − f long put

t = f long forward
t

f long call
t − f long put

t = ST −K · e−r·(T−t) − PV (D)

10.2 Applications of the put call parity

• The put call parity can be useful in the following cases:

1. If we can find a formula to price call options, the put call parity can be used
to price corresponding put options.

2. The put call parity can be used to search for arbitrage opportunities.

3. The put call parity can be used to create synthetic instruments.

4. The put call parity can be used to predict how price changes in the underlying
affect the difference between the call and the put price.

5. It is possible to back out the dividend estimate of the market.

10.3 The American put call parity no dividend case

• In the previous section we derived the expression for the European put call parity:

f Eur. long call
t +K · e−r·(T−t) = St + f Eur. long put

t

• In the case where the underlying provides no dividends, the following statements
hold true:

f Eur. long call
t = f Am. long call

t

f Eur. long put
t ≤ f Am. long put

t

We can therefore rewrite the put call parity:

f Eur. long call
t − f Eur. long put

t = ST −K · e−r·(T−t)

f Am. long call
t − f Eur. long put

t = ST −K · e−r·(T−t)

f Eur. long put
t = f Am. long call

t − ST +K · e−r·(T−t)

f Am. long put
t ≥ −ST +K · e−r·(T−t) + f Am. long call

t
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• There also exists a lower bound for the difference between the value of the
American style long call and the long put. This lower bound is given by the
equation below.

f Am. long call
t − f Am. long put

t ≥ St −K

We can proof that this relationship is valid by proving that contradicting state-
ments cannot hold true because they give rise to arbitrage opportunities. If this
condition does not hold up, the following must hold true:

f Am. long call
t − f Am. long put

t ≤ St −K

0 ≤ St −K − f Am. long call
t + f Am. long put

t

We can thus construct a strategy that provides an immediate positive cashflow.
The portfolio consists of a short position in the underlying, an investment with a
principal amount equal to the strike price, a long position in a call option and a
short position in a put option. We take a more detailed look at the cashflows the
strategy provides throughout its lifetime in the table below.

Arbitrage portfolio t0 T : ST < K T : ST > K

Short spot St0 −ST −ST

Investment −K +K · er·(T−t0) +K · er·(T−t0)

Long call option −f long call
t0 0 ST −K

Short put option +f short put
t0 ST −K 0

Total cashflow > 0 > 0 > 0

It is clear that the strategy not only provides a net positive cashflow at time
t0, but also at maturity T of the option contracts. There are no net negative
cashflows during the lifetime of the portfolio.

However, there is still a loose end. What happens if the short American style put
is being exercised before maturity, by the counterparty that is long? We can say
with certainty that the put option will only be exercised when the strike price is
greater than the spot price.

Suppose we close out all other positions in the portfolio, at the same time. This
would mean buying the underlying spot, closing out the investment prematurely
and selling the long call option. The net cashflow would then be equal to:

f Port.
t = −St +K · er·(t−t0) + f Am. long call

t −K + St

= K · er·(t−t0) −K + f Am. long call
t

≥ 0

We can see that the portfolio still provides a nett positive cashflow which means
that the restriction must hold, otherwise arbitrage opportunities arise.
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10.4 The American put call parity dividend case

• Suppose the underlying provides income streams during the life of the option
contracts. In that case, the upper bound of the put call parity changes. The
put-call parity then becomes:

St − PV (D)−K ≤ f Am. long call
t − f Am. long put

t ≤ St −K · e−r·(T−t)

• We can again proof that this relationship holds true using the no-arbitrage
principle. First, we take a look at the upper bound restriction. If the upper
bound restriction does not hold, the following statements have to be true:

f Am. long call
t − f Am. long put

t > St −K · e−r·(T−t)

f Am. long call
t − f Am. long put

t − St +K · e−r·(T−t) > 0

We can then set up an arbitrage portfolio. The portfolio consists of a short
position in an American style call option, a long position in an American style
put option, a long position in the underlying asset and a loan where the principal
amount is equal to the present value of the strike price. This strategy yields an
immediate nett positive cashflow. The table below outlines the different cashflows
during the lifetime of the strategy. We can clearly see that there are no nett
negative cashflows at any point in time during the lifetime of the portfolio.

Arbitrage portfolio t0 T : ST < K T : ST > K

Long spot −St0 +ST +ST

Loan +K · e−r·(T−t) −K −K

Short call option +f long call
t0 0 K − ST

Long put option −f long put
t0 K − ST 0

Total cashflow > 0 0 0

• Consider the situation where the holder of the call option exercises the option
prematurely. If premature exercise is beneficial, the party that is long will hold
out on exercising the option until the cum-dividend day. The option will only be
exercised when the spot price of the underlying at that time is greater than the
strike price. Mathematically:

St > K

Suppose that we close out all other positions in the portfolio at the same time.
This yields a positive cashflow from the investment, a negative cashflow from the
short call option and a positive cashflow from selling the long put option.
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We can easily see that the magnitude of the cashflow that results from selling
the underlying spot is greater than the magnitude of the cashflows that results
from the short call option and the loan. Mathematically, this becomes:

f Port.
t = K − St + f Am. long put

t + St −K · e−r·(T−t)

= K −K · e−r·(T−t) + f Am. long put
t

> 0

• Next, we take a look at the lower bound restriction. The lower bound of the
put-call parity for American-style options where the underlying provides an
income stream, is given by:

St − PV (D)−K ≤ f Am. long call
t − f Am. long put

t

• We can proof that this relationship holds true using the no-arbitrage principle. If
the lower bound restriction does not hold, the following statements have to be
true:

St − PV (D)−K > f Am. long call
t − f Am. long put

t

St − PV (D)−K − f Am. long call
t + f Am. long put

t > 0

We can set up an arbitrage strategy. The portfolio consists of a long position in
an American style call option, a short position in an American style put option, a
short position in the underlying asset, an investment where the principal amount
is equal to the present value of the strike price and an investment where the
principal amount is equal to the sum of the present value of each future income
stream that takes place during the lifetime of the options. The table below
outlines the different cashflows during the lifetime of the strategy.

Arbitrage portfolio t0 t T : ST < K T : ST > K

Short spot +St0 −D −ST −ST

Investment −K 0 +K · er·(T−t) +K · er·(T−t)

Investment −PV (D) +D 0 0

Long call option −f long call
t0 0 0 ST −K

Short put option +f long put
t0 0 ST −K 0

Total cashflow > 0 0 > 0 > 0

We can clearly see that the portfolio only provides nett positive cashflows during
the lifetime of the portfolio. We conclude that the lower boundary of the put-call
parity for American-style options must hold, also in the case of dividends, because
arbitrage opportunities cannot persist.
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• Consider however the situation where the short American-style put option is being
exercised by the long prematurely. As we know, the long will only exercise the
option when the strike price is higher than the actual spot price of the underlying:

K > St

Suppose we close out all other positions, at the same time. In that case, the
American-style call option is out of the money, but it will still have a positive
value due to the time value of the option. We are then left with the positive
cashflows from the investments and the negative cashflows from the short position
in the underlying and the short American put. We can easily see that the
magnitude of the cashflow that results from investments is greater than the
magnitude of the cashflows that results from the short put option and the short
position in the underlying. This means that the total cashflow has to be positive.
Mathematically, this becomes:

f portfolio
t = −St + PV (D) · er·(t−t0) +K · er(t−T0) + f Am. long call

t + St −K

= PV (D) · er·(t−t0) +K · er(t−T0) −K + f Am. long call
t

> 0
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11 Determinants of option prices

• There are many factors that have an impact on the value of a position in an
option contract. We will discuss each of these factors in this chapter. The main
determinants of option prices are:

– St: the value of the underlying.

– K: the height of the strike price.

– τ : the time to maturity.

– r: the riskless interest rate.

– σ: the volatility.

• First, consider the current value of the underlying St. When a long call option is
exercised, the payoff of the option is equal to the amount by which the price of
the underlying exceeds the exercise price. The long call option therefore becomes
more valuable as the price of the underlying increases. When the long put option
is exercised, the payoff is equal to the the amount by which the exercise price
exceeds the current value of the underlying. The long put option therefore
becomes less valuable as the current value of the underlying increases.

f long call
t = St − PV (K)

f long put
t = PV (K)− St

• Next, consider the influence of the height of the strike price K. As mentioned
before, the payoff of the long call option when it is exercised is equal to the
amount by which the price of the underlying exceeds the exercise price. The
long call option therefore becomes less valuable as the strike price increases. The
payoff of the long put option is equal to the amount by which the exercise price
exceeds the price of the underlying. The long put option therefore becomes more
valuable as the strike price increases.

f long call
t = St − PV (K)

f long put
t = PV (K)− St
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• We now discuss the influence of the time to maturity τ on the value of options.

– Consider the case of American-style options. As the time to maturity
decreases, the time value of the option decreases. The long call and the long
put option therefore become less valuable as the time to maturity decreases.
However, these statements do not take into account any possible dividends
the underlying provides during the lifetime of the option contract.

– Consider the case of European-style options. As we discussed before, the
long call option always has a positive time value. This means that the long
call option will become less valuable as the time to maturity decreases.

The time value of the long put option however, can be negative. This will
be the case when the long put is at or close to its maximal payoff value.
Under those circumstances, holding out will not be beneficial. This means
that we cannot make any statements about the relationship between the
European-style long put option and the remaining time to maturity.

• Consider the influence of the interest rate r on the value of options. When the
riskless interest rate increases, the present value of the exercise price decreases.
The payoff of the long call decreases with a higher exercise price while the payoff
of the long put increases with ah higher exercise price. The value of the long call
option will therefore increase when the interest rate increases while the payoff of
the long put option will decrease.

f long call
t = St − PV (K)

f long put
t = PV (K)− St

• Next, we investigate the impact of the volatility σ on the value of options.

– Consider a scenario where the price of the asset, underlying an option
contract, is equal to $100. During the next period the price of the underlying
could decline to $90 or could increase to $110, with equal probabilities.
Consider also a long European call option on this underlying with an
exercise price of $100 that expires at the end of the next period. If the price
of the underlying rises to $110, the payoff of the long call option will be
equal to $10. If the price of the underlying rises to $90, the payoff of the
long call option will be equal to $0. The expected return in this case is
equal to $5.

– Consider a second scenario where the price of the underlying could decline to
$80 or could increase to $120 during the next period, with equal probabilities.
If the price of the underlying rises to $120, the payoff of the long call option
will be equal to $20. If the price of the underlying rises to $90, the payoff of
the long call option will be equal to $0. The expected return in this case is
equal to $10.

– From this example, it is clear that a higher volatility in the price of the
underlying translates to a higher expected payout for the long call option.
Options are volatility-driven instruments. The long position in an option
contract will gain if the volatility in the price of the underlying asset increases.
The short position will gain if the volatility of the underlying asset decreases.
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– In the previous chapter we learned that the value of future and forward
contracts reflected views on the direction of the market price of the under-
lying. The value of the option contract however, reflects both the view of
the market on the direction and the volatility of the price of the underlying
asset.

– The table below summarizes the outlook on the volatility and the direction
of the market for the underlying for different types of options.

Bullish on direction Bearish on direction

Bullish on volatility Long call option Long put option

Bearish on volatility Short put option Short call option

• Finally, we investigate the influence of dividends on the value of options.

– The price of the asset, underlying the option contract declines after a
dividend has been paid out.

– A decline in the value of the underlying translates to a decline in the value
of the long call option and a rise in the value of the long put option.

– The option style is of no importance in this case (i.e. whether the option is
European-style or American-style.)

• We can now summarize the influence of the different variables on the value of
options. This is done in the table below for the long call and the long put option
for European-style options and American-style options.

f Eur. long call
t f Am. long call

t f Eur. long put
t f Am. long put

t

St + + − −
K − − + +

τ + + ? +

r + + − −
σ + + + +

D − − + +
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12 The binomial option pricing model

12.1 Discrete and continuous time

• A discrete-time model divides time into small time intervals ∆t. It models a
process between these time intervals, i.e. at different fixed points in time. We
could also model time in a continuous manner. This is done by dividing time
into infinitesimally small increments dt. The process is modeled between these
infinitesimally small time increments.

• For practical purposes, it will sometimes be necessary to discretize time when
using using a continuous time model. In that case the idea of discrete time is
superimposed on the continuous time model. The continuous time process is
then measured between different intervals in time i.e. at fixed points in time.

12.2 Models for the price behavior of the underlying

• The goal of this chapter is to construct a model for option pricing. Options
are derivatives; which means that their value is derived from the value of an
underlying. We will therefore have to model the value of the underlying first,
before a model of for the value of the options themselves can be constructed.

• First, we model time and the price of the underlying in a discrete manner. The
price of the underlying is considered to be a stochastic variable. All of this means
that the price of the underlying will evolve to one of a discrete number of prices
by the start of the next time period with a certain probability. The price thus
follows a discrete probability distribution. A model where there are only two
possible prices by the start of the next period is called a binomial model.

• A binomial model for the price of the underlying could define that the price of
the underlying either increases to a certain level with a certain probability or
decreases to a certain level with the inverse probability of the first event.

The possible prices at the start of the next period are obtained by multiplying
the current price with either a positive factor u or a negative factor d, where u
stands for upstate and d stands for downstate. The binomial model therefore is
also a multiplicative model.
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In a mathematical and graphical representation, this becomes:

St+1 =

{
P (u) : St · u
P (d) : St · d

St

St+1 = St · d

St+1 = St · u

• Suppose the price of the underlying could also remain constant. In that case
there are three different possible states of the world defined by our model. Such
a model is called a trinomial model. The basic idea however, remains the same.
Id est the model defines only a limited or discrete number of possibles states of
the world or outcomes.

• Another approach would be to model the price of the underlying in a continuous
manner. This means that the price of the underlying evolves according to a
continuous distribution. In that case there are an infinite number of possible
values which the price of the underlying could take on. The model defines a
probability for any range of possible values for the price of the underlying.

The evolution of the value of the underlying asset could for instance be modelled
by compounding the value of the asset with a return that is randomly drawn
from a standard normal distribution Mathematically:

St+1 = St · er

r ∼ N (0, 1)

12.3 A replicating portfolio for the European-style long call
option

• This section looks into how a replicating portfolio can be used in pricing a
European-style call option. Id est we model the price of the European-style long
call option, in a discrete number of states of the world, by using a replicating
portfolio.

• We illustrate the basic concepts using the following example.

– Consider a binomial model for the price/value of a certain asset. The price
of the asset today i.e. at time t0 is equal to $50. By the end of the current
period i.e. at time T , the price of the asset will have either increased to $100
with a certain probability p or will have decreased to $25 with the inverse
probability (1 − p). We can represent this binomial model in a graphical
manner.
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St0 = $50

ST = St0 · d = $25

ST = St0 · u = $100

– Next, we derive the value of a European long call option in these states of
the world. Suppose this call option has an exercise price of $50 and matures
at the end of the current period i.e. at time T . The payoff of this long call
option will therefore be either $0 or $50.

We again illustrate this model in a mathematical and graphical way.

f Eur. long call
T =

{
$50, ST = $100

$0, ST = $25

f Eur long call
t0

fT = $0

fT = $50

• We will not present a formal proof that shows how we can construct a replicating
portfolio for the European long call option. We will only illustrate such a
replicating portfolio in the example below.

– Consider the portfolio we constructed below. This portfolio is constructed
in a very particular way so that it does not provide any cashflow at time T .
The value of the portfolio at time t0 is therefore equal to zero. The portfolio
consists of three short call options, two units of the underlying and a loan.

t0 T : ST = $25 T : ST = $100

Three short call options +3 · f Eur. long call
t0 $0 $− 150

Two units long spot −$100 +$50 +$200

Loan +$40 −$50 −$50

Total +3 · f Eur. long call
t0 − $60 0 0

– Notice that the portfolio consisting of only the short positions in the Euro-
pean call option and the long spot positions, is equivalent with a riskless
investment. The payoff of this portfolio at maturity is fixed under all cir-
cumstances. The original portfolio is therefore a combination of a riskless
investment with a riskless loan. The two positions cancel each other out.
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t0 T : ST = $25 T : ST = $100

Three short call options +3 · f Eur. long call
t0 $0 $− 150

Two units long spot −$100 +$50 +$200

Total $− 40 $ + 50 $ + 50

– In the first portfolio, the risk from the short call options is hedged by going
long spot in the underlying. The cost of this operation is covered by premia
from the short call options which are matched by entering a loan. This
strategy is called a riskless hedge.

– Notice that the portfolio consisting of only the long spot positions and the
loan yields the opposite cashflows of the position in the short call options.
From this, it is clear that three long call options can be replicated by buying
two units of the underlying and by entering the loan. The long call options
are thus equivalent with a portfolio that contains the underlying which is
leveraged by entering a loan.

t0 T : ST = $25 T : ST = $100

Two units long spot −$100 +$50 +$200

Loan +$40 −$50 −$50

Total $− 60 $0 $ + 150

– This last portfolio is therefore a replicating portfolio for three long European-
style call options. The cashflows yielded by this replicating portfolio are
equal to the cashflows of the long call options, in all states of the world. The
figures below illustrate the possible states of the world for the European-style
long call option and its replicating portfolio.

f Eur. long call
t0

f Eur. long call
T,d = $0

f Eur. long call
T,u = $50

2 · St0 +B

u · 2 · St0 +B · er·(T−t0) = $50

d · 2 · St0 +B · er·(T−t0) = $0
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• We successfully replicated the long call option, using a riskless loan and a long
position in a number of units of the underlying.

• In general, we can create a replicating portfolio for a call option by taking a long
or short position in the underlying asset and by simultaneously entering a riskless
investment or a riskless loan.

• Suppose ∆ represents the number of units of the underlying asset in our portfolio
and B represents the the value of the loan. Using this notation, we can generalize
our findings. Mathematically and graphically, this becomes:{

f Eur. long call
t,d = d ·∆ · St0 +B · er·(T−t)

f Eur. long call
t,u = u ·∆ · St0 +B · er·(T−t)

St0 +B

d ·∆ · St0 +B · er·(T−t)

u ·∆ · St0 +B · er·(T−t)

• It is clear that the value of the replicating portfolio has to be equal to the value
of the long call option, in all possible states of the world. We can therefore derive
the following system of equations:{

f Eur. long call
T,d = d ·∆ · St0 +B · er·(T−t0)

f Eur. long call
T,u = u ·∆ · St0 +B · er·(T−t0)

• From this, we derive an expression for ∆ i.e. the number of units of the underlying
asset in our portfolio. Mathematically:

f Eur. long call
T,u − f Eur. long call

T,d = u ·∆ · St0 +B · er·(T−t0) − d ·∆ · St0 +B · er·(T−t0)

= ∆(uSt0 − dSt0)

∆ =
f Eur. long call
T,u − f Eur. long call

T,d

uSt0 − dSt0

• The original replicating portfolio contained three European call options which
were hedged with two units of the underlying. The delta in this case is equal
to 2

3
. Therefore, ∆ seems to tell us something about the number of units of the

underlying we need, to hedge the option position.
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• We substitute the value for ∆ in one of the equations for the payoff of the
portfolio, at time T , to derive an expression for the principal value of the loan B.
Mathematically, this becomes:

f Eur. long call
T,d = d ·∆ · St0 +B · er·(T−t0)

= d ·
f Eur. long call
T,u − f Eur. long call

T,d

uSt0 − dSt0

· St0 +B · er·(T−t0)

=
d · f Eur. long call

T,u − d · f Eur. long call
T,d

u− d
+B · er·(T−t0)

B · er·(T−t0) = f Eur. long call
T,d −

d · f Eur. long call
T,u − d · f Eur. long call

T,d

u− d

=
u− d

u− d
· f Eur. long call

T,d −
d · f Eur. long call

T,u − d · f Eur. long call
T,d

u− d

=
u · f Eur. long call

T,d − d · f Eur. long call
T,d − d · f Eur. long call

T,u + d · f Eur. long call
T,d

u− d

=
u · f Eur. long call

T,d − d · f Eur. long call
T,u

u− d

B =
u · f Eur. long call

T,d − d · f Eur. long call
T,u

(u− d) · er(T−t0)

• We have derived an expression for the number of units of the underlying ∆ and
for the principal value of the loan B. We can now derive the value of the call
option at time t0:

f Eur. long call
t0 = St0 ·∆+B

∆ =
f Eur. long call
T,u − f Eur. long call

T,d

uSt0 − dSt0

B =
u · f Eur. long call

T,d − d · f Eur. long call
T,u

(u− d) · er(T−t0)
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• We now only have to substitute the expressions for ∆ and B in the formula for
the long European call option. Mathematically, this becomes:

f Eur. long call
t0 = ∆ · St0 +B

=
f Eur. long call
T,u − f Eur. long call

T,d

uS − dS
· St0 +

u · f Eur. long call
T,d − d · f Eur. long call

T,u

(u− d) · er(T−t0)

=
R · (f Eur. long call

T,u − f Eur. long call
T,d )

R · (u− d)
+

u · f Eur. long call
T,d − d · f Eur. long call

T,u

(u− d) ·R

=
R · f Eur. long call

T,u −R · f Eur. long call
T,d + u · f Eur. long call

T,d − d · f Eur. long call
T,u

R · (u− d)

=
R−d
u−d

· f Eur. long call
T,u + u−R

u−d
· f Eur. long call

T,d

R

• We can clearly see that the value of the European call option is equal to the sum
of two discounted cashflows.

• Note that both fractions in the numerator are positive and sum up to one.
These fractions can therefore be interpreted as probabilities. We can rewrite
the expression for the option price, interpreting these fractions as probabilities.
Mathematically, this becomes:

p =
R− d

u− d

(1− p) =
u−R

u− d

f Eur. long call
t0 =

p · ft,u + (1− p) · ft,d
R

• The formula above tells us to take the average payout of a risky instrument and
to discount the payout using the riskless interest rate. Something seems wrong
here. Why would we want to discount the cashflow of a risky instrument, using
a riskless interest rate? To see why this makes sense, consider three different
investors:

– A risk-averse investor who expects to receive the risk free interest RF rate
plus a risk premium RP on his investment. This investor is not willing to
take a risk without compensation.

– A risk-neutral investor who expects to receive the risk-free interest rate RF
on his investment. This investor does not care about the riskiness of his
investment.

– A risk-seeking investor who to expects to receive the risk-free interest RF
minus a risk premium RP on his investment. This investor is willing to pay
a risk premium.
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• A risk-neutral investor would look for any investment that satisfies the following
condition:

p · u · St0 + (1− p) · d · St0 = St0 ·R
p · u+ d− p · d = R

p · (u− d) = R− d

p =
R− d

u− d

• The probability p is defined as a risk-neutral probability i.e. the probability that
a risk-neutral investor would ascribe to the upstate of the underlying.

• The formula uses risk-neutral probabilities. We are evaluating the option from a
risk-neutral perspective. We can therefore discount the payout at the riskless rate.
Whether we use the point of view of the risk-neutral investor, the risk-averse
investor or the risk-seeking investor does not matter in determining the price
of the option. However, when using the probabilities ascribed to the possible
states of the world from another investor’s perspective, the interest rate, used
for discounting in the option pricing formula, will not be equal to the risk-free
rate. Id est the interest rate that has to be used is unknown. The price is
unambiguously determined. If the option price deviates from the theoretical price,
given by the expression we derived, arbitrage is possible. Using the risk-neutral
probabilities is easier however, because we can then use the risk-free interest rate
to discount the possible cashflows.
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12.4 The two-period binomial option pricing model

• In this section, we take further steps towards generalizing our option pricing model
by increasing the number of periods from one to two. Where a one-period model
yields two possible outcomes with two corresponding probabilities, a two-period
model yields three possible outcomes with three corresponding probabilities. The
two-period model therefore offers a better view of the possible outcomes and the
attached probabilities. We get a more refined view on what can happen to the
underlying and hence what can happen to the option price at maturity.

• Building a tree can be done using one of two different methods. The first method
is called branching out, the result is a non-recombining tree. After n steps, the
tree contains 2n nodes. The second method is called recombining, the result is a
recombining tree. This tree is the result of a multiplicative model. After n steps,
the tree contains n nodes and 2n different paths. We will build a recombining
tree.

• Assume that the volatility is constant. In that case, the probability of the upstate
is always equal to p and the probability of the downstate is always equal to
(1− p), across the different periods.

• Consider the expression we derived for the option price in the previous section:

f Eur. long call
t0 =

p · fT,u + (1− p) · fT,d
R

• This formula can be adapted for the case where there are two periods instead
of one. The adapted formula calculates the value of an option at the start of a
period based on the option prices at the end of that period. Mathematically, this
becomes:

f Eur. long call
t−1 =

p · ft,u + (1− p) · ft,d
R

• If we know the distribution of the option prices at time t, we can derive the
distribution of the option prices at time t− 1. Id est if we know the distribution
of the option prices in one period, we can derive the distribution of the option
prices in the previous period.

• Determining the price of an option in a given period is thus a recursive process
which uses the formula above. In the first step we grow a tree of the value of the
underlying, given the factors u and d. We can then determine the value of the
option at maturity T which is equal to its payoff. The calculation of the payoff
of the option is based on the strike price and the value of the underlying asset
at maturity, both of which are known. Furthermore, we can apply the formula
above to determine the price of the option at time T − 1. When the price of the
option at T − 1 is know, the formula can again be used to determine the value at
time T − 2 et cetera. Mathematically, this becomes:{

f Eur. long call
(t−1),u =

p·ft,uu+(1−p)·ft,ud
R

f Eur. long call
(t−1),d =

p·ft,ud+(1−p)·ft,dd
R
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• In this section we specifically considered a two-period model. We will therefore
derive the value of the European-style long call option at time t0 in the case of a
two period model. Mathematically, this becomes:

f Eur. long call
T−2 =

p · f Eur. long call
T−1,u + (1− p) · f Eur. long call

T−1,d

R

=
p ·

[
p·f Eur. long call

T,uu +(1−p)·f Eur. long call
T,ud

R

]
+ (1− p) ·

[
p·f Eur. long call

T,ud +(1−p)·f Eur. long call
T,dd

R

]
R

=
p2 · f Eur. long call

T,uu + 2 · (1− p) · p · f Eur. long call
T,ud + (1− p)2 · f Eur. long call

T,dd

R2

From this we can see that the European-style long call option is the discounted
value, over two periods, of the potential cashflows which are multiplied with their
respective probabilities.
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12.5 The three-period binomial option pricing model

• In the previous section, we increased the number of periods in the binomial model
from one to two. We derived that the value of the European long call option is
the discounted value, over two periods, of the potential cashflows multiplied with
their respective probabilities.

• Consider a binomial model with three different periods instead of two. We can
easily see that the value of the European call is given by:

f Eur. long call
T−3 =

[
p3 · f Eur. long call

T,uuu

+ 3 · p2(1− p) · f Eur. long call
T,uud

+ 3 · p · (1− p)2 · f Eur. long call
T,udd

+ (1− p)3 · f Eur. long call
T,ddd

]
/R3

• In this case there are a total of 23 = 8 paths. We are interested in calculating the
total number of paths that lead to the same outcome. I.e. we want to calculate
how many paths lead to the same leaf node. Every combination of k successes
or upticks in a collection of n trials or paths, leads to the same outcome. The
number of combinations of k upticks in a collection of n paths, is given by:(

n

k

)
=

n!

k! · (n− k)!

• The formula for the value of the European call option, three periods prior to the
maturity of the option T , can therefore be written in the following fashion:

f Eur. long call
T−3 =

[
p3 · f Eur. long call

T,uuu ·
(
3

3

)
+ p2(1− p) · f Eur. long call

T,uud ·
(
3

2

)
+ p · (1− p)2 · f Eur. long call

T,udd ·
(
3

1

)
+ (1− p)3 · f Eur. long call

T,ddd ·
(
3

0

)]
/R3
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12.6 The multiperiod binomial option pricing model

• We can generalize the binomial option pricing model for an arbitrary number of
periods n and a number of successes j. Mathematically, this becomes:

f Eur. long call
T−n =

∑n
j=0

(
n
j

)
· pj(1− p)n−j ·

[
max

(
0, St0 · uj · d(n−j) −K

)]
Rn

• In summary, we derived a formula that allows us to recursively determine the value
of an option, n periods prior to the last period. Graphically, this corresponds
to folding the tree with the option prices from the back towards the front.
Mathematically, this corresponds to substituting the formula for the option price
of time t in the formula for the option price of time t− 1.

• Notice that this method of option pricing is only possible if there are no early
exercise features. This is because this method assumes that the final cashflows and
their corresponding probabilities are given. Id est we take the final cashflows and
their corresponding probabilities as given. From this we compute the expected
cashflow, which is discounted back to today.

• Notice the maximum operator in the expression above. We would simplify the
expression for the binomial option pricing model by reformulating the expression
without this operator. The maximum operator reflects the fact that the option
will only be exercised when the value of the payoff is positive. For the option to
be in the money, there need to be a yet unknown number of upticks a. We will
now derive this minimum number of upticks a. Mathematically, this becomes:

ua · dn−a · S −K ≥ 0

ua · d(n−a) ≥ K

S

a · ln(u) + ((n− a)) · ln(d) ≥ ln(
K

S
)

a · (ln(u
d
)) + ln(dn) ≥ ln(

K

S
)

a ≥
ln(K

S
)− ln(dn)

ln(u
d
)

• Notice that the factor in square brackets in the numerator of the expression is
equal to zero when j is smaller than a. This implies that all terms for which
j < a are equal to zero and will not contribute to the sum in the numerator.
We can therefore start the sum for j = a. Doing so will make the maximum
operator redundant because the payoff will always be greater or equal to zero
for j ≥ a. Mathematically, this adapted version of the binomial option pricing
model becomes:

f Eur. long call
T−n =

∑n
j=a

(
n
j

)
· pj · (1− p)(n−j) ·

[
uj · d(n−j) · St0 −K

]
Rn
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12.7 Interpreting the binomial option pricing model

• Notice that we can split the equation for the binomial option pricing model into
two different parts. Mathematically, this becomes:

f Eur. long call
T−n =

∑n
j=a

(
n
j

)
· pj · (1− p)(n−j) ·

[
uj · d(n−j) · St0 −K

]
Rn

=

∑n
j=a

[(
n
j

)
· pj · (1− p)(n−j) · uj · d(n−j) · St0

]
Rn

− K

Rn
·
[ n∑

j=a

(
n

j

)
· pj · (1− p)n−j

]

• Consider the first term in the expression which reflects the present value of the
expected cashflows from the asset underlying the option.∑n

j=0

(
n
j

)
· pj(1− p)n−j · uj · d(n−j) · St0

Rn

– The following factor reflects the probability of being in the money.

n∑
j=a

(
n

j

)
· pj(1− p)(n−j)

– While the following factor reflects the potential prices of the underlying
when the option is in the money.

n∑
j=a

uj · dn−j · St0

• Consider the second term in the expression which reflects the present value of
the expected cost that is incurred by exercising the option, when the option is in
the money.

− K

Rn
·
[ n∑

j=a

(
n

j

)
· pj · (1− p)n−j

]
– The first factor reflects the present value of the strike price.

− K

Rn
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– The second factor reflects the sum of all probabilities of paths where j is
greater than or equal to a id est the cumulative probability that the option
is in the money.

n∑
j=a

(
n

j

)
· pj · (1− p)n−j

• We can clearly see that the formula for the binomial option pricing model compares
the cost of exercising the option with the benefit of exercising the option at a
given point in time. The binomial option pricing model therefore gives the net
benefit of exercising the option.

12.8 Binomial option pricing: dividends

• We now investigate how the binomial option pricing model can be adapted to
the case where the asset underlying the option contract, provides a dividend.

– First, recall the expression for the binomial option pricing model. Mathe-
matically:

f Eur. long call
t0 =

p · f Eur. long call
T,u − (1− p) · f Eur. long call

T,d

R

Where p is defined in the following manner:

p =
R− d

u− d

– Suppose the asset, underlying the option contract provides a dividend during
the lifetime of the option contract. We could include this dividend in the
model by adjusting the drift rate. In the risk-neutral world, the risk-free
interest rate is the drift rate of the stock price. Mathematically, this becomes:

p =
e(r−γ)·τ − d

u− d

p =
a− d

u− d

Where R and a are defined in the following manner:

R = 1 + r

= er

a = (r − γ) · τ
= e(r−γ)·τ
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12.9 Delta hedging

• Recall from the first example in this chapter that a position in the underlying
could be hedged by entering a position in short call options. The delta ∆ expressed
the number of short call options which were required to offset the position in the
underlying.

– Recall the expression we derived for the delta ∆. Mathematically:

∆ =
fT,u − fT,d
uSt0 − dSt0

– In general, the delta ∆ expresses the relationship between price changes in
the underlying and price changes in the option contract. Mathematically:

∆ =
δf

δS

– The delta for a long call option is always positive and has a value between
zero and one. If the value of the underlying increases, the value of the long
call option also increases.

– If the long call option is very deep in the money, the delta will be equal to
one. Id est if the value of the underlying goes up by a certain amount, the
value of the long call option will go up by the same amount. If the long call
option is very deep out of the money, the delta will be equal to zero. Id est
fluctuations in the price of the underlying have no real impact on the value
of the long call option.

– Notice that the delta can change over time. If we are hedging over a certain
period of time, we will have to adjust the hedge over time. When the delta
changes, the relationship between price changes in the option and price
changes in the underlying changes.

– For forward contracts, the delta remains one over the whole time period. It
is therefore possible to set up a hedge with future contracts over a certain
time period without having to adjust the hedge during this period.

– In order to hedge with options, we will need a dynamic strategy. When
hedging with call options for example, we will have to adjust the number of
units in the underlying vis â vis the written call options on this underlying.
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12.10 The multiperiod binomial option pricing model in a
spreadsheet program

• It is pretty easy to implement a binomial option pricing model in a spreadsheet
program. We consider a two-period binomial option pricing model for a long
call option. The figure below shows how to construct a binomial tree for such
a case. On the left side we outline the current price of the underlying St0 , the
strike price of the option K, the factors u and d and the gross interest rate R.
The probability p can be easily computed as R−d

u−d
. The probability (1− p) is of

course the inverse probability.

• The first step entails constructing the binomial tree for the price of the underlying.
The upstate price of the underlying after one period is acquired by multiplying
the price of the underlying in the current period with u. The downstate price
of the underlying after one period is acquired by multiplying the price of the
underlying in the current period with d.

Figure 12.1: Calculating the probabilities p and (1− p).

Figure 12.2: Calculating the upstate price of the underlying based on the price of the
previous period and the factor u.
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• The second step entails calculating the payoff of the option at maturity T , in
all possible states of the world. The figure below shows how this is done in a
spreadsheet program. The payoff function of a long call option is given by:

fT = max (ST −K, 0)

Figure 12.3: Calculating the payoff of the long call option at maturity T .

• We now have the price of the long call option at maturity T . It is therefore
possible to calculate the price of the call option, one period prior using the
formula of the binomial option pricing model. The figure below shows how this
is done in a spreadsheet program. Mathematically, this becomes:

f Eur. long call
t−1 =

p · ft,u + (1− p) · ft,d
R

Figure 12.4: Calculating the value of the option one period prior to the maturity T .
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• Notice that this representation of the binomial tree does not translate well to a
spreadsheet. We will therefore propose another representation for the tree which
is shown in the figure below. Each row represents the price of the underlying at
different points in time. The first rows represents a geometric sequence of prices
of the underlying for different points in time where the common ratio is equal to
u. The second row is equal to the first row multiplied with the factor d

u
, the third

row is equal to the second row multiplied with the factor d
u
, et cetera. Notice

that each new row moves up one column to the right. The binomial tree for the
option prices can be derived in the same manner as before.

Figure 12.5: An alternative, more spreadsheet-friendly representation of the binomial
tree for the price of the underlying.

Figure 12.6: Calculating the price of the option at maturity using the alternative
representation.

Figure 12.7: Calculating the price of the option before maturity using the alternative
representation.
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• We can also calculate the probability that we will end up in a specific leaf node
i.e. the probability that the option price is equal to a certain value. This done
using the formula for the binomial distribution. In our spreadsheet we can use
the ”BINOM.DIST” function. Mathematically:

Px =

(
n

x

)
· px · (1− p)n−x

Figure 12.8: Calculating the probability for each leaf node in the binomial tree.

• Finally, we can compute the expected cashflow for the long call option. This is
done by taking the sum of the product of every cashflow that corresponds to
a leaf node and its corresponding probability. We then discount this expected
cashflow back to the present time to obtain the price of the option today. The
figure below illustrates how this can be done in a spreadsheet program.

Figure 12.9: Calculating the present value of the expected cashflow for the long call
option.
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13 Continuous time mathematics primer

• Recall the formula for the value of the European call option:

f Eur. long call
t0 =

∑n
j=a

(
n
j

)
· pj · (1− p)n−j · uj · dn−j

Rn
· ST

=
[ n∑

j=a

(
n

j

)
· pj · (1− p)n−j

]
· K

Rn

• Our goal is to compute the limiting case for the binomial option pricing model,
where the number of periods goes to infinity. Id est, we let the number of steps
in the tree approach infinity. Mathematically, this becomes:

lim
n→∞

(f Eur. long call
t0 )

• First and foremost, we repeat some basic mathematical concepts. We will use
these concepts later on in this chapter.

– Recall the Taylor-expansion for a function f(x), which is given by the
following equation:

f(x+∆x) = f(x) +
f ′(x)

1!
∆x+

f ′′(x)

2!
∆x2 +O(3)

– Next, consider also the Taylor-series expansion of the natural logarithm of a
variable x, i.e. f(x) = ln(x). Ignoring all terms of degree three and higher,
this Taylor-expansion is given by the following equation:

ln(x+∆x) ≈ ln(x) +
1

x
· 1
1!

·∆x+
−1

x2
· 1
2!

·∆x2∣∣ Provided that ∆x is small already, we can safely ignore ∆x2.

≈ ln(x) +
1

x
·∆x

≈ ln(x) +
∆x

x
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– We evaluate the function at the point where x is equal to one. Provided
that x is small, the following statement is approximately true:

ln(1 + ∆x) ≈ ln(1) + ∆x

≈ ∆x

– The expression above has an important consequence, in a financial context.
Id est it is possible to approximate simple returns with log returns when
they are measured on a small time span.

13.1 Evolution of wealth in a riskless world

• The evolution of wealth in a riskless world is completely deterministic. There are
no stochastic variables involved. We can model the evolution of wealth over time
by compounding a capital sum over a certain time period, using a known interest
rate r.

– In the case of simple compounding, a capital sum St0 will capitalize over a
time period τ to ST . Mathematically:

ST = St0 · (1 + r · τ)

– In the case of periodic compounding, a capital sum St0 will capitalize over a
time period τ to ST . Mathematically:

ST = St0 · (1 +
r

m
)τ ·m

– Continuous compounding is the limit case where the compounding frequency
m frequency approaches infinity. Mathematically:

lim
m→∞

(1 +
r

m
)τ ·m = lim lim

m→∞
eln((1+

r
m
)τ ·m)

= e(τ ·m)·ln(1+ r
m
)

≈ e(τ ·m)· r
m

≈ eτ ·r

• These models model the evolution of wealth in a deterministic way and will
therefore only work in a riskless world. However, we are interested in how the
value of a risky underlying asset evolves over time. To do this, we will have to
model the value of the underlying as a stochastic variable.
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13.2 Evolution of wealth in a risky world

• Consider the evolution of the value of a risky asset over time. The evolution of
the value of such an asset is random in the long term. We therefore model the
spot price of such an asset at a certain point in time as a stochastic variable. The
value of this asset over time is therefore a series of stochastic variables, indexed by
time. We say that the value of the underlying S behaves as a stochastic process.
Mathematically, this becomes:

{St0 , St1 , ..., ST}

• Notice that there are only realizations of the price of the asset at discrete points
in time. Id est the time and the value of the underlying are modelled in a discrete
manner.

• Suppose now that we let the time step ∆t become infinitesimally small. Such
a time step is denoted by dt. In that case, there are realizations for every
infinitesimally small time step dt. Mathematically, this becomes:

lim
∆t→0

∆t = dt

• In this chapter, we will discuss different approaches to model the value of the
risky asset in a continuous manner, these are called continuous time stochastic
processes. These continuous time stochastic processes, include:

– White noise

– The Wiener process.

– The generalized Wiener process.

– The Ito process.

13.3 Gaussian white noise

• The first continuous time stochastic process we consider, is called Gaussian white
noise. Suppose the value of an underlying asset is modelled by a stochastic
variable Z. The value of the given asset at an arbitrary point in time is equal
to Zti . As stated before, the value of the asset is a series of stochastic variables,
indexed by time. Mathematically, this becomes:

{Zt0 , Zt1 , ..., Zti , ...}

• The value of the underlying after one period is computed as the sum of the value
of the underlying in the previous period and a value, randomly drawn from a
standard-normal distribution. Mathematically:

Zti+1
= Zti + ϵ1
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The random values, are independent and identical drawings from the same
standard-normal distribution. Mathematically:

ϵi
idd∼ N (0, 1)

The value of the underlying after two periods is therefore given by:

Zti+2
= Zti + ϵi + ϵi+1

• We can easily expand these expressions for an arbitrary number of periods n:

Zt0 = Zt0 + ϵ1

Zt2 = Zt0 + ϵ1 + ϵ2

...

Ztn = Zt0 + ϵ1 + ϵ2...+ ϵn

• In general, the value of the asset, after an arbitrary number of periods i, is given
by the following expression:

Zti = Zt0 +
i∑

j=1

ϵj

Where ϵj ∼ N (0, 1) are independent drawings from the same distribution.

• We now take a look at the properties of this process.

1. Gaussian white noise is a stochastic process where we have a starting value
Zt0 and a series of realizations Zt0 , Zt1 , ...

2. The value of the asset between one period and the next, is computed as:

Zt+1 = Zt + ϵt+1

Zt+1 − Zt = ϵt

≡ ∆Z

3. The expected value of this ∆Z is equal to zero while the variance of ∆Z is
equal to one. Mathematically, this becomes:{

E(∆Z) = 0

σ2(∆Z) = 1
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4. The difference in value of the asset, after n periods, is computed as the
sum of n random independent drawings from the same standard-normal
distribution. Mathematically, this becomes:

∆Zn = Zt+n − Zt

= Zt +
n∑

i=1

ϵi − Zt

=
n∑

i=1

ϵi

5. The expectation of the difference in value of the asset after n periods is equal
to zero. The variance of the difference in value of the asset after n periods
is equal to the number of periods n; this property is called independent
innovations.

E(∆Zn) = E(
n∑

i=1

ϵi)

=
n∑

i=1

E(ϵi)

= 0

var(
n∑

i=1

ϵi) =
n∑

i=1

var(ϵi)

= n · 1
= n

6. The expected value of the asset, after n periods is equal to the value of
the asset at the present time, this property is characteristic for a Markov
process. Id est this property is known as the Markov-property.

E(Zt+n) = Zt
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13.4 The Wiener process

• Gaussian white noise has two important limitations. First of all, we want a
process which has a built-in relationship with time. Id est the expected value and
the variance of the stochastic process should vary with time. Such relationships is
not present in Gaussian white noise. Furthermore, we cannot scale the volatility
in Gaussian white noise. Id est we should be able to adapt the volatility of
the process according to the idiosyncratic risk of a specific asset. We are thus
confronted with two scaling problems.

• First, consider the problem of building in a relationship of the process with time.
There are several possibilities that allow us to scale ∆Z with time.

1. ∆Z = ϵ ·∆t

2. ∆Z = ϵ · (∆t)2

3. ∆Z = ϵ ·
√
∆t

• Consider the first candidate where we multiply the difference in the value of the
asset in a given time period ϵ, with time t itself. Mathematically:

∆Z = ϵ ·∆t

We can easily see that the expectation of such a process is equal to zero while
the variance is equal to the time period squared. Mathematically:

E(∆Z) = E(ϵ ·∆t)

= ∆t · E(ϵ)

= 0

var(∆Z) = var(ϵ ·∆t)

= (∆t)2 · var(ϵ)
= (∆t)2 · 1
= (∆t)2

For our purposes, we will choose ∆t to be a small as possible. The variance
therefore becomes negligibly small. If we want to go to a continuous time process,
there is no point is scaling ϵ with ∆t because the variance would become zero.
The process would therefore come to a halt because both the variance and the
expectation of the process would be zero.
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• Consider the second candidate, where we multiply the difference in the value of
the asset ϵ with the time period squared. Mathematically:

∆Z = ϵ · t2

We can easily see that this second candidate has the same problem. Id est, the
variance will become negligibly small, for small ∆t. Mathematically:

var(∆Z) = var(ϵ · (∆t)2)

= (∆t)4 · var(ϵ)
= (∆t)4

• Consider the third candidate, where we multiply the difference in the value of the
asset ϵ with the square root of the length of the time period. Mathematically:

∆Z = ϵ ·
√
∆t

We can easily see that the expectation of this process is equal to zero, while the
variance is equal to the time period itself. Mathematically:

E(∆Z) = E(ϵ ·
√
t)

=
√
∆t · E(ϵ)

= 0

var(∆Z) = var(ϵ ·
√
∆t)

= ∆t · var(ϵ)
= ∆t

• In conclusion, if we want to scale the process with time, it is better to use the
square root of time. In doing so, we make the variance proportional with time
and we avoid that the variance becomes negligible. We therefore adapt our model
by multiplying the difference in the value of the asset over a given time period ϵ,
with the square root of the time period

√
∆t. Mathematically:

∆Z = ϵ ·
√
∆t
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• We will now examine this process over multiple time periods. Suppose there are
n time steps i.e. the time to maturity is divided into n different periods. The
size of such a time step is given by:

∆t =
τ

n

• We are interested in the difference in the value of the asset between time t0 and
time T . This difference is of course equal to the sum of the differences in the
value between each subsequent period. Mathematically:

ZT − Zt0 =
n∑

i=1

∆Zi

=
n∑

i=1

ϵi ·
√
∆t

• The expected value of the difference in the value of the asset, between time t0 is
equal to zero. Mathematically:

E(ZT − Zt0) = E(ZT )− E(Zt0)

= 0

• The variance of the difference in the value of the asset, between time T and time
t0 is equal to the length of the entire period. Mathematically:

var(ZT − Zt0) = var(
n∑

i=1

ϵi ·
√
∆t)

= ∆t · var(
n∑

i=1

ϵi)

= n ·∆t

= (T − t0)

≡ τ

• Suppose we let the time interval ∆t become infinitesimally small. The expression
that we derive for this limiting case characterizes the Wiener process which is
also known as the standard Brownian motion. Mathematically:

lim
∆t→dt

(∆Z) = lim
∆t→dt

ϵ ·
√
∆t

dz = ϵ ·
√
dt
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13.5 The generalized Wiener process.

• In the standard Brownian motion, price changes in the underlying asset, during
a given time period, are proportional to that time period. This reflects greater
price changes over longer periods of time.

• However, this process will still revolve around zero due to the fact that the
expectation of the process is equal to zero. Id est there is no drift. A process
that reflects the price behaviour of an asset needs to incorporate a drift for in
normal circumstances, asset prices increase over time.

• Our goal is to incorporate a drift in the process that is proportional to time. Id
est the value of the asset should increase with time. Mathematically, this drift
becomes:

a ·∆t

• In doing so, we have built in a linear trend in the model. Our updated model
consists of two terms. The first term reflects the trend in the price of the asset
whereas the second term reflects the volatility in the price of the asset. Note
that the second term is stochastic in nature while the first term is completely
deterministic. Mathematically:

dx = a · dt+ dz

• We now address the second problem we discussed with Gaussian white noise;
being that it is not possible to scale the volatility of the process. In the case of the
standard Brownian motion, the volatility of the process was equal to the length
of the time period. The volatility therefore increases with time. This reflected
the fact that, the further we go in time, the less certainty there exists about the
value of the asset. We can multiply the term that is responsible for the volatility
dz with a factor b to control for the size of the volatility. Mathematically:

b · dz

• We have scaled the volatility of the process. Our updated model again consists
of two terms. The first term still reflects the trend in the price of the asset
whereas the second term still reflects the volatility in the price of the asset. This
process is known as the arithmetic Brownian motion. The term a · dt is called
the instantaneous drift and the term b · dz is called the instantaneous volatility.
Mathematically, this becomes:

dx = a · dt+ b · dz
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• Note that for the case where a is equal to zero and b is equal to one; the
arithmetic Brownian motion becomes a standard Brownian motion. Id est the
standard Brownian motion is nested inside the geometric Brownian motion.
Mathematically:

dx = a · dt+ b · dz
= 0 · dt+ 1 · dz
= dz

• We can summarize all of the above, with the following set of equations:
Z ∼ N (0, 1)

X = Z · σ + µ

dx = a · dt+ b · dz

• We now take a closer look at the properties of the arithmetic Brownian motion. As
we already know, the arithmetic Brownian motion contains both a deterministic
term which is responsible for the drift of the process and a stochastic term which
is responsible for the volatility of the process. Mathematically:

dx = a · dt+ b · dz

– The stochastic term is of no importance for the expectation of the process.
Mathematically:

E(dx) = E(adt+ bdz)

= E(adt) + E(bdz)

= adt+ b · E(dz)

= adt+ b · E(ϵ
√
dt)

= adt+ b ·
√
dt · E(ϵ)

= adt

– The deterministic term is on its turn of no importance for the variance or
the volatility of the process. Notice also that the variance is proportional to
the time step dt. Mathematically:

var(dx) = var(adt+ bdz)

= var(bdz)

= b2 · var(
√
dt · ϵ)

= b2 · dt · var(ϵ)
= b2 · dt

264



– We now consider the difference in the value of the asset over a time period
of length xT − xt0 , where there are n time steps. Mathematically:

∆t =
τ

n

– The expectation of this price difference is equal to a, multiplied by the length
of the time period.

E(xT − xt0) = E(
n∑

i=1

∆x)

= E(
n∑

i=1

a∆t+ b · ϵ ·
√
∆t)

= E(
n∑

i=1

a∆t) + E(
n∑

i=1

b · ϵ ·
√
∆t)

= a · n∆t+ n · b ·
√
∆t · E(ϵ)

= a · τ + 0

= aτ

– The variance of this difference is equal to b, multiplied by the length of the
time period.

var(xT − xt0) = var(
n∑

i=1

a ·∆t+ b ·
√
∆t · ϵ)

= var(
n∑

i=1

b ·
√
∆t · ϵ)

=
n∑

i=1

var(b ·
√
∆t · ϵ)

=
n∑

i=1

b2 ·∆t · var(ϵ)

= b2 ·∆t ·
n∑

i=1

var(ϵ)

= b2 ·∆t · n
= b2τ

• In summary, dz is the standard Brownian motion. In this process, there is
no drift and the volatility is proportional to time. The geometric Brownian
motion incorporates a drift (a · dt) into the process, which is proportional to time.
The geometric Brownian motion also scales the volatility of the process. This
corresponds with stretching the process with time.

265



• Positive and negative cashflows are possible within this model. For this reason, this
process is not suitable to model stock prices. Furthermore, this model represents
linear growth while stock prices tend to grow in an exponential manner.

13.6 The Ito process

• By now, we have derived the expression for the arithmetic Brownian motion. In
the case of the arithmetic Brownian motion, the trend is linear. However, in
general, stock prices tend to grow in an exponential manner. Recall that in the
case of exponential growth, relative changes remain equal. We can easily adapt
the arithmetic Brownian motion to reflect exponential growth by adapting the
model to reflect relative price changes instead of absolute price changes. The
relative change in the price of an underlying asset then grows with a certain trend
udt and is subject to a volatility of σdz. Mathematically, this becomes:

dS

S
= u · dt+ σ · dz

• This process is an Ito-process or more specifically, the geometric Brownian motion.
Notice that both the drift term and the diffusion term are proportional to the
price of the underlying S. Id est, both are a function of S. This implies that
both the linear trend and the volatility scale up with the height of the price of
the underlying asset. Mathematically, this becomes:

ds = u · S · dt+ σ · S · dz

• In summary, the Ito process is the arithmetic Brownian motion where we make
the drift term and the volatility a function of x. The geometric Brownian motion
is a specific case of the Ito-process where the drift term a(x, t) · dt is equal to
ux · dt and where the volatility b(x, t) · dt is equal to σx · dt. Mathematically:

dx = a(x, t) · dt+ b(x, t) · dz
dx = ux · dt+ σx · dz

13.7 The Ornstein-Uhlenbeck process

• In some applications, the variable x follows a mean-reverting process. The
coefficient in the drift term is then no longer fixed but is dependent on the
distance between the actual value and the mean value of the independent variable.
Mathematically, such a process can be expressed by the following equation:

dx = k · (µ− x) · dt+ σ · tγ
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• The first term is the drift term which is now dependent on the distance between
the actual value and the mean value of the variable x. The coefficient k reflects
the speed of the mean reversion. In the long term, the process returns to its
original level, hence its name.

• This process can be used to model an interest rate. Under normal circumstances,
interest rates are not expected to behave as a geometric Brownian motion in the
long term because an interest rate returns to its original levels in the long term.

13.8 Discretization

• Consider the geometric Brownian motion, which is a continuous time process.
The discretized version of the geometric Brownian motion does not consider
instantaneous price changes dS and instantaneous time changes dt but rather
changes in price ∆S and in time ∆t i.e. changes over a certain price range and
over a certain time period. Mathematically:

∆S

St

= µ ·∆t+ σ ·
√
∆t · ϵ

• The expression above defines the relative price change of an underlying asset
between two points in time t and t+ 1. Ignoring the volatility, the price of the
underlying asset at time t+ 1 is therefore equal to the price of the underlying
asset at time t multiplied with this relative price change ∆S

St
. Mathematically,

this becomes:

St+1 = St · (1 +
∆S

St

)

• Consider the limit case where the time step ∆t becomes infinitesimally small.
Mathematically:

lim
∆t→dt

(
St+1

)
= lim

∆t→dt

(
St · (1 +

∆S

St

)
)

St+1 = St · eu·dt

• We now do consider the volatility in the price of the underlying. This corresponds
to increasing the exponent with σdz.

St+1 = St · e(udt+σdz)

• This discretized version of the geometric Brownian motion process models the
price of the underlying as revolving around an exponentially increasing function
with time. The discretized version of this process is given by the equation below.

St1 ≈ St · eu∆t+σ
√
δt·ϵ
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13.9 Working with random functions

• The derivative of an arbitrary function f(x), is given by:

lim
∆x→0

f(x+∆x)− f(x)

∆x

• The derivative gives the rate of change and measures the impact of one variable
on another variable. In essence, we give a small shock to x, measure the change
in the function value and divide by the size of the shock.

• Suppose now that we want to compute the derivative of a stochastic variable.
Suppose for example that x follows a standard Brownian motion. Mathematically:

dx = ϵ ·
√
dt

• Suppose we build a function of x, for example x2 Mathematically:

f(x) = x2

Because x is a stochastic variable, we cannot easily derive the compute the
derivative of this function.
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13.10 The Ito-Doeblin Lemma

• The Ito-Doeblin lemma states that, if a variable x follows an Ito-process, then a
specific function G(x), also follows an Ito-process.

• This function G(x) consists of a deterministic part and a stochastic part. The
uncertainty of both x and G(x) depends on the same stochastic variable dz.
Therefore, if we have a model for the value of an underlying asset x at our
disposal; the function of the value of the underlying x i.e. G(x) will depend on
the same source of uncertainty as the value of the underlying asset x. Notice
that the value of a derivative contract is always a function of the value of the
underlying asset. Mathematically:

– Suppose that x follows an Ito process:

dx = a(x, t) · dt+ b(x, t) · dz

– In that case, G(x) also has to follow an Ito process:

dG = (Gxa+Gt + 0.5Gxx · b2) · dt+ (Gx · b) · dz

• We will not provide a real proof of Ito’s lemma in this section. However, we will
provide a proof based on an heuristic approach.

– First, assume that x follows an Ito-process and let G be a continuous and
differentiable function of x and t. Mathematically:

dx = a(x, t) · dt+ b(x, t) · dz

– In the first step, we discretize the expression for the Ito process: Mathemat-
ically:

∆x = a(x, t) ·∆t+ b(x, t) · ϵ ·
√
∆t

– We derive the expression for ∆x2 and for ∆x∆t, in the limiting case, where
∆t → 0 and ∆S → 0.

∆x2 =
[
a(x, t) ·∆t+ b(x, t) · ϵ ·

√
∆t

]2
= a(x, t)2 ·∆t2 + b(x, t)2 · ϵ2 ·∆t+ 2 · a(x, t) · b(x, t) · ϵ ·∆t

3
2

= b(x, t)2 · ϵ2 ·∆t

∆x∆t =
[
a(x, t) ·∆t+ b(x, t) ·

√
∆t

]
·∆t

= a(x, t) · (∆t)2 + b(x, t) · (∆t)
3
2

= 0
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– Consider what happens to ϵ2 ·∆t. If ∆t becomes very small, the variance
becomes zero. There is no more variance left. In that case, ϵ2 ·∆t becomes
∆t. Mathematically:

E(ϵ2 ·∆t) = ∆t · E(ϵ2)

= ∆t

var(ϵ2 ·∆t) = E(ϵ2 ·∆t−∆t)2

= 0

– With this, we can modify the expression for ∆x2. Mathematically:

∆x2 = b(x, t)2 · ϵ2 ·∆t

= b(x, t)2 ·∆t

• Consider also the Taylor-series expansion of the 2nd order for the function G.
Mathematically:

∆G =
δG

δx
·∆x+

δG

δt
·∆t+

1

2
· δ

2G

δx2
·∆x2 +

1

2
· δ

2G

δt2
·∆t2 +

1

2
· δ

2G

δxδt
·∆x ·∆t+O(3)

=
δG

δx
·∆x+

δG

δt
·∆t+

1

2
· δ

2G

δx2
· b(x, t)2 ·∆t+O(3)

=
δG

δx
·∆x+

δG

δt
·∆t+

1

2
· δ

2G

δx2
· b(x, t)2 ·∆t

dG =
δG

δx
· dx+

δG

δt
· dt+ 1

2
· δ

2G

δx2
· b(x, t)2 · dt

• We can substitute dx into this equation for the Ito process. Mathematically:

dG =
δG

δx

[
a(x, t) · dt+ b(x, t) · dz

]
+

δG

δt
· dt+ 1

2
· δ

2G

δx2
· b(x, t)2 · dt

=
[δG
δx

· a(x, t) + δG

δt
+

1

2
· δ

2G

δx2
· b(x, t)2

]
· dt+ δG

δx
· b(x, t) · dz
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13.11 Financial applications

• First, consider a forward contract on an underlying that provides no income
during the lifespan of the forward contract.

– The forward price is defined as:

F = St0 · er(T−t0)

– Suppose the price of the underlying asset S follows a geometric Brownian
motion:

dS = µ · S · dt+ σ · S · dz

– Our goal is to derive the stochastic process for the forward price F . To do
this, we first compute the first derivatives of the forward price with regard
to time, of the forward price with regard to the price of the underlying and
the second derivative of the forward price with regard to the price of the
underlying.

δF

δS
= er·(T−t)

δF

δt
= −r · S · er·(T−t)

δ2F

δS2
= 0

– Next, we determine the value of a and b:

a = µ · S
b = σ · S

– Finally, we substitute the results in Ito’s lemma:

dF =
[
er·(T−t) · µ · S − r · S · er·(T−t)

]
· dt+ er(T−t) · σ · S · dz

=
[
(µ− r) · F

]
· dt+ σ · F · dz
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• Suppose we were to model the price of an underlying asset with the geometric
Brownian motion. This would imply that the price of the underlying asset could
becomes negative which is of course impossible. For this reason, we take the
function G(S) to be the natural logarithm of the price of the underlying asset.
In doing so, we avoid prices becoming negative.

– The function G(S) thus represents the natural logarithm of the price of the
underlying. Mathematically:

G(S) = ln(S)

– The expression for dG represents the change in the log prices after an
infinitesimally small time period dt. This price change is equivalent with
the logarithm of the gross return in this time period. Mathematically:

ln(St+dt)− ln(St) = ln(
St+dt

St

)

– In the first step, we compute the derivatives:

δG

δS
=

1

S
δ2G

δS2
= − 1

S2

δG

δt
= 0

– In the second step, we determine the value for a and b:

a = µ · S
b = σ · S

– In the last step, we substitute these findings in Ito’s lemma. We then find
an expression for the log-returns dG. Mathematically:

dG =
[ 1
S
· µ · S +

1

2
· (− 1

S2
) · (σ · S)2

]
· dt+ 1

S
· σ · S · dz

= (µ− 1

2
· σ2) · dt+ σ · dz

– We conclude that G(S) follows a generalized Wiener process i.e. the drift is
constant and the volatility is constant. The instantaneous volatility is the
same for the relative price changes of the underlying as for the price changes
of the derivative. The instantaneous drift for the price of the derivative is
equal to the instantaneous drift the relative price changes of the underlying
asset, plus half of the variance.
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– Notice that the log-returns dG are normally distributed because the only
stochastic element was dz which itself was normally distributed.

dG = ln(St+dt)− ln(St) ∼ N
(
(µ− 1

2
· σ2) · dt, σ ·

√
dt
)

– This implies that the prices themselves are log-normally distributed. Mathe-
matically:

ln(St+dt) ∼ N
[
ln(St) + (µ− 1

2
· σ2) · dt, σ ·

√
dt
]

St+dt ∼ LN

– In summary, when the log-returns of the underlying are conjectured to
follow a normal distribution, the prices of the underlying follow a log-normal
distribution. This implies that returns can take on any real value, but
prices, as modelled by the function G(S), cannot become negative. In option
pricing we therefore favour log-returns. Mathematically:

dG ∈ [−∞,+∞]

S · e−∞ = 0

13.12 The log-normal distribution

• Assume that the returns over a given period, starting at time t0 and ending
at time T , are normally distributed with mean µcT and with variance σ2T .
Mathematically, this becomes:

E
[ST

St0

]
= µcT

var
[ST

St0

]
= σ2T

• Assume now that the returns over the given period are log-normally distributed.
The log-normal distribution assumes that the natural logarithm of the returns
are normally distributed:

ln(
St1

St0

) ∼ N (µc, σ)

• The standard properties of the log-normal distribution tell us that:

E
[ST

St0

]
= eµcτ+0.5σ2τ

var(
ST

St0

) = e2µcτ+2σ2τ − e2µcτ+σ2τ
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• This implies that, in the case of a risk-free asset, the returns are constant.
Mathematically:

ST

St0

= eµcT

µcT = ln(
ST

St0

)

13.13 Confidence intervals

• Suppose the returns of a stock, with a current price which is equal to $100, follow
a normal distribution. The mean of these returns is equal to 10% while the
variance is equal to 30%. We are interested in the 95% confidence interval for
the stock price, in three months time.

– First we calculate the mean and variance for the gross returns within three
months time. Mathematically, this becomes:

µcT = 0.10 · 0.25
= 0.025

σ2T = 0.32 · 0.25
= 0.0225

– The gross returns within three months time are thus normally distributed
with mean 0.025 and standard deviation 0.0225. Mathematically:

ln(
ST

100
) ∼ N (0.025, 0.0225)

–

– We can construct a 95% confidence interval for the gross returns of the stock.
From this we can easily derive the 95% confidence interval for the price of
the stock at maturity. Mathematically, this becomes:

P (0.025 + 1.96·0.0225 < 0.025− 1.96 · 0.0225 < ln(
ST

100
))

= P (−0.269 < ln(
ST

100
) < 0.319)

= P (e−0.269 < eln(
ST
100

) < e0.319)

= P (76.41 < ST < 137.58)
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14 The Black-Scholes-Merton model

14.1 Assumptions

• In this chapter, we adhere to the following assumptions:

– Stocks are continuously traded.

– Stocks follow a geometric Brownian motion which implies that the volatility
is constant.

– Short selling is allowed.

– There are no transaction costs.

– Assets are perfectly divisible.

– There are no dividends during the lifetime of option contracts.

– The riskless interest rate is constant and the term structure of interest rates
is flat.

14.2 Introduction

• Recall Ito’s lemma. If a variable x follows an Ito-process, then the function G(x)
of this variable also follows an Ito-process. Mathematically, this becomes

dx = a(x, t)dt+ b(x, t)dz

dG = (Gx · a+Gt + 0.5 ·Gxx · b2) · dt+ (Gx · b) · dz

• Suppose we construct a portfolio, containing:

1. One unit in a short derivative for which the value is given by G.

2. Gx units of the asset itself. Where the value of this asset is given by x.

• The value of this portfolio Π can therefore be computed in the following manner:

Π = −G+Gx · x
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• We can then derive an expression for a change in the value of the portfolio dΠ by
substituting the expressions for dx and dG, in the expression for the value for
the portfolio. The resulting expression is completely deterministic i.e. there is no
stochastic term left in the equation. This implies that the portfolio is a riskless
investment. The portfolio should therefore yield the riskless interest rate.

dΠ = −dG+Gxdx

= −(Gx · a+Gt + 0.5 ·Gxx · b2) · dt− (Gx · b) · dz
= −(Gt + 0.5 ·Gxx · b2) · dt

• A riskless position of size Π will earn interest r · Π · dt over an infinitesimally
small time perioddt. Mathematically, this becomes:

dΠ = r · Π · dt

• Substituting the expressions for Π and dΠ in the equation above yields a partial
differential equation.

dΠ = r · Π · dt

−
[
Gt + 0.5 ·Gxx · b2

]
· dt = r ·

[
−G+Gx · x

]
· dt

−Gt − 0.5 ·Gxx · b2 = −r ·G+ r ·Gx · x
Gt + r ·Gx · x+ 0.5 ·Gxx · b2 = r ·G

• To solve this partial differential equation, we have to look for functions that
satisfy the partial differential equation. Solving a partial differential equation
does not yield a unique solution. All financial derivatives share the same partial
differential equation, but they differ in their boundary condition. Additional
information is required in order to determine a unique solution. This information
entails the value of the payoff at maturity. Id est the boundary condition for a
specific financial derivative is the payoff function for that financial derivative, at
maturity.

• Any function f(s, t) that is a solution to the partial differential equation, gives
the theoretical price of the derivative in question. Any function that is not a
solution to the partial differential equation, yields prices for the derivative in
question, for which arbitrage is possible.
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14.3 Risk-neutral valuation

• To solve the partial differential equation, we use the Feynman-Kac theorem
which restates the equation in a different way. We assumed that the underlying
asset yields the risk-free interest rate. In order to compute the price of a given
derivative, we will have to compute the expected payoff from the given derivative
and discount this expected payoff at the risk-free rate, back to the present.

• First, we consider a long forward contract.

– We assume the underlying asset yields the risk-free interest rate.

– We compute the expected cashflow from the payoff of the forward contract.

f Long fw.
T = ST · e(r·τ) −K

– We compute the present value of the expected cashflow using the risk-free
interest rate.

f Long fw.
t0 = (ST · e(r·τ) −K) · e(−r·τ)

= ST −K · e(−r·τ)

• Next, consider a European long call option.

– First, assume that the underlying asset yield the risk-free interest rate
and that the price of the underlying follows a geometric Brownian motion.
Mathematically, this becomes:

dS = r · S · dt+ σ · S · dz

ln(ST ) ∼ N
(
ln(St0 + (r − 1

2
· σ2) · τ, σ ·

√
τ
)

ST = St0 · e(r−
1
2
·σ2)·τ+σ·

√
τ ·ϵ

– Next, we compute the expected cashflow of a European call option from the
payoff at maturity.

E(f Eur. long call
T ) = E(max (ST −K, 0))

=

∫ +∞

−∞
[max(ST −K, 0) · ϕ] · dϵ
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– The expression for the expectation of the payoff of the option contains a term
with a maximum operator. This term represents the payoff of the option,
which is of course dependent on the value of the underlying at maturity.
Our goal is to get rid of this maximum operator. Notice that the the payoff
should always be greater than or equal to zero. The payoff will only be
greater than or equal to zero in the case where the price of the underlying at
maturity ST is greater than or equal to the strike price K. Mathematically,
this becomes:

ST ≥ K

– Notice also that the expression for the expectation of the payoff of the option
was given by an integral over ϵ. We are therefore interested in rewriting the
inequality above to express for what values of ϵ the inequality holds true.
Mathematically, this becomes:

St0 · e(r−
1
2
·σ2)·τ+σ·

√
τ ·ϵ∗ ≥ K

(r − 1

2
· σ2) · τ + σ ·

√
τ · ϵ∗ ≥ ln(

K

St0

)

ϵ∗ ≥
ln( K

St0
)− (r − 1

2
· σ2) · τ

σ ·
√
τ

– By adjusting the lower bound of the integral, we take into account only those
cases for which the payoff is either positive or equal to zero. In adjusting
the lower bound of the integral, the maximum operator became irrelevant.
Mathematically, this becomes:

E(f Eur. long call
T ) =

∫ +∞

ϵ∗
[ST −K] · [ 1√

2 · π
· e

−1
2
·ϵ2 ] · dϵ

– We can furthermore substitute the expression we found earlier for the value
of the underlying asset at the maturity ST . After this, we split the integral.
Mathematically, this becomes:

E(f Eur. long call
T ) =

∫ +∞

ϵ∗
[St0 · e(r−

1
2
·σ2)·τ+σ·

√
τ ·ϵ −K] · [ 1√

2 · π
· e

−1
2
·ϵ2 ] · dϵ

=

∫ +∞

ϵ∗
[St0 · e(r−

1
2
·σ2)·τ+σ·

√
τ ·ϵ]−K ·

∫ +∞

ϵ∗

1√
2 · π

· e
−1
2
·ϵ2 · dϵ

– Notice that part of the integral corresponds to the expression of a normal
distribution. Mathematically:∫ +∞

ϵ∗

1√
2 · π

· dϵ = P (ϵ ≥ ϵ∗)

= P (ϵ ≤ −ϵ∗)

= N (−ϵ∗)
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– Taking this fact into account, we can rewrite the expression for the ex-
pectation of the value of the European-style long call option, at maturity.
Mathematically, this becomes:

E(f Eur. long call
T ) =

∫ +∞

ϵ∗
St0 · e(r−

1
2
·σ2)·τ+σ·

√
τ ·ϵ · 1√

2 · π
· e−

1
2
·ϵ2 · dϵ−K · N (ϵ∗)

=

∫ +∞

ϵ∗
St0 · e(r−

1
2
·σ2)·τ+σ·

√
τ ·ϵ · 1√

2 · π
· ϵσ·

√
τ ·ϵ− 1

2
·ϵ2 · dϵ−K · N (−ϵ∗)

– Notice the the following holds true:

σ ·
√
T − 1

2
· ϵ2 = −1

2
· (ϵ− σ ·

√
T )2 +

1

2
· σ2 · T

– With this, we can again rewrite the equation for the expectation of the value
of the European-style long call option, at maturity.

E(f Eur. long call
T ) = St0 · er−

1
2
·σ2·τ ·

∫ +∞

ϵ∗

1√
2 · π

· e−
1
2
·(ϵ−σ·

√
τ)2+ 1

2
·σ2·τ · dϵ

= St0 · er−
1
2
·σ2·τ+ 1

2
·σ2·τ ·

∫ +∞

ϵ∗

1√
2 · π

· e(−
1
2
)·(ϵ−σ·

√
τ)2 · dϵ−K · N (ϵ∗)

= St0 · er·τ ·
∫ +∞

ϵ∗

1√
2 · π

· e−
1
2
·(ϵ−σ·

√
τ)2 · dϵ−K · N (ϵ∗)

= St0 · er·τ ·
∫ +∞

ϵ∗

1√
2 · π

· e−
1
2
·(ϵ−σ·

√
τ)2 · dϵ−K · N (−ϵ∗)

– Notice that the integral corresponds to and can be written in terms of a
probability. Mathematically, this becomes:∫ +∞

ϵ∗

1√
2 · π

· e−
1
2
·(ϵ−σ·

√
τ)2 · dϵ = P (ϵ ≥ ϵ∗)

= P (ϵ− σ ·
√
τ ≥ ϵ∗ − σ ·

√
τ)

= P (−ϵ+ σ ·
√
τ ≤ −ϵ∗ + σ ·

√
τ)

= N (−ϵ+ σ ·
√
τ)

– We will now propose the following new notation:{
d1 = −ϵ∗ + σ ·

√
τ

d2 = −ϵ∗

– With this new notation, the expression for the expectation of the value of
the European-style long call option can be rewritten. Mathematically, this
becomes:

E(f Eur. long call
T ) = St0 · er·τ · N (d1)−K · N (d2)
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– With this, we derived an expression for the expectation of the value of the
payoff of the European-style long call option at maturity. At his time we
can calculate the present value of this expected payoff by discounting this
expectation. Mathematically, this becomes:

f Eur. long call
t0 = e−r·τ · E(f Eur. long call

T )

= e−r·τ ·
[
St0 · er·τ · N (d1)−K · N (d2)

]
= St0 · N (D1)−K · e−r·τ · N (d2)

The first term is equal to the present value of the expected benefits. The
second term reflects the present value of the expected exercise cost. N (d1)
reflects the probability to be in the money in the risk-neutral world.

– In the previous paragraphs, we derived an expression for the Black-and-
Scholes-Merton option pricing model. We now restate the mathematical
expression of this model:

f Eur.long call
t0 = St0 · N (d1)−K · e−r·τ · N (d2)

Where d1 and d2 were defined in the following manner:d1 =
ln(

St0
K

)+(r+0.5·σ2)·τ
σ·
√
τ

d2 = d1 − σ ·
√
τ
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– Notice that, for an option to be very deep in the money:

1. N (d2) would converge to one.

2. N (d1) would converge to one.

If that were the case, the value of the European-style long call option
would simplify to the value of the corresponding long forward contract.
Mathematically:

f Eur. long call
t0 = St0 −K · e−r·τ

= f Long fw.
t0

• We not need to derive a separate model for put option pricing while the put-call
parity can be used to derive such a model. Mathematically, this becomes:

f Eur. long call
t0 +K · e−r·τ = fEur. long put

t0 + St0

f Eur. long put
t0 = f Eur long call

t0 +K · e−r·τ − St0

= St0 · N (d1)−K · e−r·τ · N (d2) +K · e−r·τ − St0

= −St0 ·
[
1−N (d1)

]
+K · e−r·τ ·

[
1−N (d2)

]
= K · e−r·τ · N (−d2)− St0 · N (−d1)

14.4 The volatility

• In this section we will discuss the important matters concerning the volatility σ.

• First, recall the expression for the Black-and-Scholes-Merton option pricing model.
However, in this case we make the important distinction between τ1 which reflects
the number of trading days within the given period and τ2 which reflects the
number of calendar days within the given period . Mathematically, this becomes:

f Eur. long call
t0 = St0 · N (d1)−K · e−r·τ1 · N (d2)

Where d1 and d2 were defined in the following manner:d1 =
ln(

St0
K

)+(r+0.5·σ2)·τ2
σ·
√
τ

d2 = d1 − σ ·
√
τ

• Notice that the volatility σ is generated during trading days. Id est the value
of the underlying does not fluctuate on days other than trading days. For this
reason, τ1 is calculated on the basis of the number of trading days in a year
which is equal to 252 days. Interest calculations are done on the basis of the
number of calendar days in a year. For this reason, τ2 is calculated on the basis
of the number of calendar days in the year. In summary, we use calendar days
for discounting and trading days for rescaling the volatility.

• In general, there are two approaches to measuring the volatility σ.
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1. First we have the unconditional volatility. The unconditional, historic
volatility takes a window of past returns and calculates the standard deviation
to get an estimate of the volatility over the next period. This is done,
following the following steps.

– First, we compute n continuous returns, on a daily basis. Mathemati-
cally:

r = ln(
st
st−1

)

– Furthermore, we estimate the unbiased standard deviation of the n
continuous returns. Mathematically:

s =

√√√√ 1

n− 1
·

n∑
i=1

(r − r̄2)

– As we know already, the standard deviation s is an estimate of the pop-
ulation standard deviation σ. We can therefore compute the population
standard deviation σ. Mathematically:

σ =
ŝ√
τ

2. Secondly, we have the conditional volatility which comprises different meth-
ods to calculate the volatility. Some examples are given here.

– GARCH models i.e. generalized autoregressive conditional heteroscedas-
ticity. GARCH models are time series models in which we are making
the volatility vary with time. The future volatility is a therefore function
of the past volatility.

– A second alternative is called implied volatility estimates. This method
backs out market information to obtain volatility estimates. In this case,
the volatility is an estimate over the lifetime of the option contract.

This method is hampered by smiles and smirks in τ and K. Id est
options with different time to maturities and strike prices have different
volatilities. Options that are in the money have a different volatility
than options that are out of the money. A solution consists of modeling
a volatility surface where the x-axis represents the time to maturity,
where the y-axis represents the moneyness of the option as measured
by S

K
and where the z-axis represents the implied volatility. We can

then use weighting schemes where a greater weight is given to options
that are more sensitive to volatility changes i.e options that are in the
money.

– A third alternative involves using a fear index such as the Vix. The
Vix is an index of implied volatilities, computed from 30-day S&P500
options. A quote of 15 represents a volatility of 15% p.a. The Vix future
is a future contract where the underlying is the Vix index and where
the future price is the Vix-index times one thousand.
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14.5 The dividend cases

• Dividends play no role in the case of European-style options. In the case of
American-style options where there is no dividend, both the Black-and-Scholes
model and the binomial option pricing model can be used without any adaptations.

• Dividends can be modeled in a continuous manner, using a dividend yield γ and
in a discrete way, expressing the value of each dividend Di, separately.

• Consider a long position in a future contract on an underlying that provides a
dividend during its lifetime. The value of that future contract is adjusted by
subtracting the present value of the dividend. Mathematically, this becomes:

f Long fut.
t0 = ST · e−γ·τ −K

f Long fut.
t0 = ST − PV (D)−K

• Consider a European call option on an underlying that does not provide a
dividend.

– The Black-and-Scholes formula computes the price of this option in the
following manner:

f Eur. long call
t0 = St0 · N (d1)−K · e(−r·τ) · N (d2)

Where d1 and d2 were defined in the following manner:d1 =
ln(

St0
K

)+(r+σ2

2
)·τ

σ·
√
τ

d2 = d1 − σ ·
√
τ

– We suggest the following adaptation for the case where the asset, underlying
the option contract provides a dividend yield γ.

f Eur. long call
t0 = St0 · e−γ·τ · N (d1)−K · e−r·τ · N (d2)

Where d1 and d2 are defined in the following manner:d1 =
ln(

St0
·e−γ·τ

K
)+(r+σ2

2
)·τ

σ·
√
τ

d2 = d1 − σ ·
√
τ

Or alternatively: d1 =
ln(

St0
K

)+(r−γ+σ2

2
)·τ

σ·
√
τ

d2 = d1 − σ ·
√
τ
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• The expression for the European-style long put option, in the continuous dividend
case, becomes:

f Eur. long put
t0 = K · e−r·τ · N (−d2)− St0 · e−γ·τ · N (−d1)

Where d1 and d2 are defined in the following manner:d1 =
ln(

St0
·e−γ·τ

K
)+(r+σ2

2
)·τ

σ·
√
τ

d2 = d1 − σ ·
√
τ

Or alternatively: d1 =
ln(

St0
K

)+(r−γ+σ2

2
)·τ

σ·
√
τ

d2 = d1 − σ ·
√
τ

• The Black-and-Scholes model is intended for European-style options. In the case
of of American-style call options, where the underlying asset does not provide
discrete dividends during the lifetime of the option, the option price will be
equal to the option price of the corresponding European-style long call option.
In the case of American-style call options, where the underlying asset provides
discrete dividends during the lifetime of the option, it cannot be precluded that
the option will be exercised cum-dividend. In this case, the option price can
be determined by using the Roll-Geske-Whayley analytical solution or by using
Black’s approximation which is easier to implement. Neither will be discussed.

• We summarize our findings.

– in the case where the asset underlying the option provides dividends, the
value of the underlying at maturity ST in the Black-and-Scholes model is
replaced with the value of the underlying at maturity, discounted with a
dividend yield γ or subtracted by the sum of the present value of each
individual dividend that is provided by the underlying during the lifetime
of the option contract. Mathematically:

f Eur. long call
t0 = St0 · e−γ·τ · N (d1)−K · e−r·τ · N (d2)

f Eur. long call
t0 =

[
St0 − PV (D)

]
· N (d1)−K · e−r·τ · N (d2)

– By including a dividend, the level of the process is lowered. We should
therefore also adjust the volatility:

St0

St0−D
·σ The volatility will be somewhat

higher. Id est we have the same absolute shocks, but we apply them on a
lower level.
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14.6 Currency options

• We now take a look at currency options. More specifically, we will determine the
price of a European-style long call currency option.

– Recall the expression for the Black-and-Scholes-Merton option pricing model.
Mathematically:

f Eur. long call
t0 = St0 · e−γ·τ · N (d1)−K · e−r·τ · N (d2)

– In this case the dividend yield γ should be interpreted as the interest rate
provided by the foreign currency. Mathematically, this becomes:

f Eur. long call
t0 = St0 · e−γ·τ · N (d1)−K · e−r·τ · N (d2)∣∣γ = rfor.

= er·τ · e−r·τ · St0 · erfor.·τ · N (d1)−K · e−r·τ · N (d2)

= St0 · e(r−rfor.)·τ · e−r·τ · N (d1)−K · e−r·τ · N (d2)

=
[
f Long fw.
t · N (d1)−K · N (d2)

]
· e−r·τ

Where d1 and d2 are defined in the following manner:

d1 =
ln(

St0
·e−rfor.·τ

K
+(r+σ2

2
·τ))

σ·
√
τ

=
ln(

St0
·e(r−rfor.)·τ ·e−r·τ

K
+(r+σ2

2
·τ))

σ·
√
τ

=
ln(

f
Long fw.
t0

−r·τ+r·τ+σ2

2 ·τ

K
)

σ·
√
τ

=
ln(

f
Long fw.
t0

+σ2

2 ·τ

σ·
√
τ

)

den

d2 = d1 − σ ·
√
τ

• This model can be used in different applications:

– This model can be used to model exchange rates, in such a case, the dividend
yield is a continuous yield.

– The model can also be used to model an option on an index. We then
express many small dividend payments as a yield over the maturity of the
option. The dividend yield is thus an average dividend yield over the lifetime
of the option.
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15 Delta hedging with
Black-Scholes-Merton

15.1 Introductory example

• In this chapter, we will investigate how we can use options to convert a portfolio
into a riskless portfolio i.e. how we can use option for hedging purposes.

• In this regard, it is important to understand the sensitivity of the value of an
options with respect to the underlying. These sensitivities are called the Greeks.
Studying these sensitivities will allow us to better hedge a position with options.

• First, we will illustrate how the Black-and-Scholes-Merton option pricing model
can be used to set up a hedge using an introductory example.

– If a financial institution sells a derivative it makes a profit because there is
a bid-ask spread. The financial institution is not interested making a profit
by speculation. Id est the financial institution is not interested in creating
an exposure. The financial institution will therefore attempt to hedge the
exposure, after selling the derivative.

– Suppose the financial institution was able to sell 100.000 European call
options on an underlying that provides no dividends during the lifetime of
the option, for a price $300.000. The current price of the stock is $49. The
strike price was set to $50. The risk-free interest rate is equal to 5%. The
time to maturity is equal to 20 weeks. The volatility is equal to 20% p.a.

– According to the black and Scholes model, the price of the call option when
it was sold is equal to $2.4. The total cost of all options combined, at the
time of the sale, is therefore equal to $2.4 · 100.000 = $240.000.

– The value of this position at the time of the sale can be computed as the
difference between the total amount of premia received and the total value
of all options. Mathematically, this becomes:

$300.000− $240.000 = $60.000
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– At this point in time, the financial institution can undertake one of several
possible actions.

1. The financial institution could decide to keep the naked position on the
books.

If the price of the underlying asset at maturity is less then $50, the
payoff of the option is equal to zero. This would results in a profit of
$300.000. If the price of the underlying asset at maturity is greater
than $50, the payoff of the option is negative. An increase of the option
price above $50.6, would result in a loss for the financial institution.
Mathematically, this becomes:{

ST < 50 → f Portf.
T = 0

ST > 50 → f Portf.
T = −100.000 · (ST − 50)

2. The financial institution could also opt to use a covered call option
strategy by purchasing 100.000 stocks upfront. The payoff of this
portfolio per unit of the underlying, is given by:

f Portf.
T = (ST − $49)−max (ST − $50, 0)

= min ($1, ST − $49)

If the price of the underlying decreases below 48, 40, this will result in
a loss for the company.

– Both strategies are not very good. We observe that the naked position
works out well if the stock price decreases below the strike price while the
covered call strategy works out well if the stock price rises above the strike
price. The question is whether we could combine the best of both worlds.
In theory, we could try to set up a stop-loss strategy. This corresponds to
taking the covered call position if ST > K while taking the naked position
if ST < K.

– However, this strategy is difficult to implement in practice. More specifically,
the cashflows resulting from this strategy would occur at random times. It is
therefore likely that the present value of these cashflows will not be equal to
zero. Furthermore, trading will incur transaction costs which could quickly
sky-rocket. Finally, it would be difficult to time the transactions exactly.

– For these reasons, the financial institution will have to buy and sell at prices
that deviate from the actual strike price. Mathematically, this becomes:{

Buy at K +∆

Sell at K −∆

– These observations result in a catch-22 situation. If ∆ is kept small, we
potentially have to trade a lot. If ∆ is large, we deviate from the hedging
idea.
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15.2 Dynamic delta hedging

• In the previous section we discussed hedging an option position. This was done
using a stop-loss strategy. This meant we by bought and sold the number of
units of the underlying equal to the number of options, each time the price of
the underlying would cross certain boundaries. Id est we bought or sold the
whole block of the underlying each time the price of the underlying would cross a
certain boundary. This strategy was difficult to implement in practice.

• We could improve upon this strategy by setting up a replicating portfolio for the
option portfolio and by continuously adapting this portfolio. Such a strategy was
called dynamic delta hedging.

• Recall that a riskless position could be obtained, by combining one short European
call option with ∆ units of the underlying asset. The Delta ∆ was the rate of
change in the option price, with respect to the price of the underlying. The Delta
measured the slope in the relationship between the option and the value of the
underlying asset. For example, a Delta of +0.6 means that a small increase in
the price of the underlying asset of ∆ will result in an increase of 0.6 ·∆ in the
option price. Mathematically:

∆ =
δf

δS

• We will now derive the expression for the delta of various instruments. Computing
the delta boils down to calculating the first derivative.

– Delta of a long call option.

0 ≤ δf

δS
≤ 1

– Delta of a long put option.

−1 ≤ δf

δS
≤ 0

– Delta of the underlying.
δS

δS
= 1

– Delta of a long forward contract, on a non-dividend paying asset.

δf

δS
=

δ(S −K · e−r·τ )

δS
= 1

– Delta of a long forward on a dividend paying asset.

δf

δS
=

δ(S · e−γ·T ) · e−r·τ

δS
= e−γ·τ
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• We will now show how a delta hedge can be constructed by considering the
following example.

– Suppose we have 20 short call options and that the contract size is equal to
100. The Delta for a long call is equal to 0.6. If the price of the underlying
increases with one dollar, the price of one call option will increase with sixty
cents.

– The goal here is to make the portfolio immune to changes in the price of
the underlying. This portfolio can be hedged using options or using the
underlying itself.

– We first consider the latter method where we add a number of units of the
underlying to the portfolio such that the delta of the options is exactly
compensated. The delta of the portfolio after entering into the long position
in the underlying is the sum of both delta’s. If we add the underlying to
the portfolio, the total delta of the portfolio would be equal to zero and the
portfolio would therefore become delta neutral. Mathematically:

∆ Portf. = ∆ Short call portf. +∆ Long spot portf.

= 0

– The question now becomes, what information we need to calculate the delta
of a given position in a given instrument. In our example, we can compute
the delta of the short call portfolio in the following manner:

∆ Short call portf. = −(20 · 100) · 0.6
= −1200

– This computation comprises the following elements:

1. The direction of the relationship between the price of the derivative
instrument and the price of the underlying asset.

2. The size of the derivatives position. Id est the number of derivative
instruments within the portfolio that is to be hedged.

3. The sensitivity of the derivative with regard to the underlying.

– The portfolio can be hedged by entering into a long spot position, of 1200
units, in the underlying. Mathematically:

∆ Portf. = ∆ Short call portf. +∆ Long spot portf.

0 = −1200 + n ·∆S

n = 1200

– Recall that when the option is deep in the money, the delta ∆ will be equal
to one and when the option is deep out of the money, the delta ∆ will be
equal to zero. Id est, the delta changes whenever the price of the underlying
changes. This means we will have to adjust the hedge, during the lifetime of
the hedge, based on the delta of the option. This called dynamic hedging.
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– Consider the following scenario where the stock price increases in value and
causes the delta of the call option to increase from 0.6 to 0.7. The portfolio
will now have a net delta position of −200.

∆ Short call position = −2000 · 0.7 = −1400

∆ Long spot position = +1200 · 1 = +1200

∆ Portf. = −200

– It is clear that, in order to become delta-neutral again, the financial institu-
tion will have to purchase 200 additional units of the underlying. Such a
procedure is known as rebalancing.

• Consider a new example.

– We are given a portfolio that contains the following components:

1. 100 long call options with a delta of 0.6.

2. 200 short call options with a delta of 0.4.

3. 50 short put options with a delta of −0.30.

– The contract size of an option contract is equal to 100 units of the underlying.
This portfolio can be made delta-neutral by going long in 500 units of the
underlying. We derived this by calculating the delta of the portfolio.

∆Portf. = ∆ Long call pos. +∆ Short call pos. +∆ Short put pos.

= +10.000 · 0.6− 20.000 · 0.4− 50.000 · −0.30

= −500

– In general, the delta of a portfolio of derivatives, written on a single under-
lying asset, is given by the weighted average of the deltas of the individual
derivatives. Mathematically, this becomes:

∆portfolio =
n∑

i=1

wi ·∆i

Where ∆i is the delta of the ith option and wi is the number of options held.
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• The question now rises whether we need the underlying itself to perform a
delta-hedge. The answer to this question is negative.

– Consider for example a portfolio of currency options, held by a US-bank
which could be made delta neutral by going short in the underlying for
£458.000. The risk-free interest rate is equal to 4% in the United States
and 7% in the United Kingdom.

– The delta of a short position in a futures contract was given by the following
expression:

∆ Short fut. = e−(r−rfor.)·τ

– The delta of the entire position in the short futures, is computed by mul-
tiplying the delta of short future contract with the size of the position.
Mathematically:

∆Portf. = ∆ Short fut. · n
= e−(0.04−0.07)· 9

12 · $458.000
= $468.422

– A currency future has a contract size of £62.500. We would therefore need to
enter seven short forward contract to hedge this position. Mathematically:

n =
$468.442

$62.500
= 7.50

– In conclusion, the hedge ratio based on currency futures HF , is given by:

HF = e−(r−rfor.)·τ ·HA

Where HA is the delta of the position we need to hedge. If we would put up
a hedge with the underlying itself, this would be equal to one.
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16 The Greeks

• Portfolio traders not only like to hedge the sensitivity of the options within the
portfolio vis à vis the price of the underlying but also is à vis other variables.
For example, a portfolio trader would likely want the delta of his portfolio to
remain relatively constant over time. The portfolio trader would thus like the
sensitivity of the delta itself to be small. The sensitivity of the delta corresponds
to the second derivative of the price of the option with regard to the price of
the underlying. This sensitivity is called the gamma. We will also consider the
sensitivity of the options within the portfolio vis à vis other variables such as
interest rates, the time to maturity and the volatility.

16.1 The Delta

• The delta of a long call option corresponds to the parameter N (d1) in the
Black-and-Scholes-Merton model. The delta of a long put option corresponds
to N (d1)− 1. In the case where there is a dividend, the delta of the option is
discounted with the dividend yield γ. Mathematically:

∆ Long call ndiv = N (d1)

∆ Long put ndiv = N (d1)

∆ Long call div = N (d1) · e−γ·τ

∆ Long put div = N (d1) · e−γ·τ

• We can also compute the delta in a numerical way. This is done by considering
the general expression of the first derivative of a function. We investigate the
evolution of the value of the the derivative for small changes in the price of the
underlying asset.

f ′(x) = lim
∆x→0

f(x+∆x)− f(x)

∆x

f ′(S) = lim
∆S→0

f(S +∆S)− f(S)

∆S
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16.2 The Gamma

• The gamma Γ reflects the sensitivity of the delta ∆ with respect to the price of the
underlying asset S. The gamma therefore corresponds to the second derivative
of the value of the derivative with regard to the price of the underlying asset.
Mathematically, this becomes:

Γ Portf. =
∆2Π

∆S2

=
∆

δS

• We can now easily calculate the gamma Γ for various types of derivatives. Consider
for example the long call and the long put option. Mathematically, this becomes:

Γ Long call = Γ Long put =
N ′(d1) · e−γ·τ

S · σ ·
√
τ

Where N ′(d1) can be computed, using the following equation:

N ′(x) =
1

√
2π · e 1

2
·x2

• We will now try to create a portfolio that is not only delta-neutral but also
gamma-neutral. This would imply the delta of the portfolio will be relatively
insensitive to changes in the price of the underlying. A portfolio trader would
therefore not need to rebalance his portfolio as much as before i.e. the hedge will
not have to be adjusted as much.

• Notice that the gamma of the underling itself is always equal to zero. This means
we cannot change the gamma of a portfolio of options by going long or short
spot in the underlying. We will have to gamma-hedge by adding other options to
the portfolio. After a portfolio is made gamma-neutral, we can easily change the
delta by going long or short in the underlying, this will not change the gamma.
In summary, we can make a portfolio delta-neutral by taking a position in the
underlying, doing so will not affect the gamma of the portfolio. Mathematically:

δ2S

δS2
=

δ

δS

(δS
δS

)
=

δ

δS

(
1
)

= 0

• The delta is most sensitive to changes in the price of the underlying when an
option is at the money. Id est the gamma is maximal when an option is at the
money. When the option is deep in the money or deep out of the money, the
delta is not sensitive to price changes.
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16.3 The relationship between the delta and the gamma

• Recall the fundamental partial differential equation. Mathematically:

ΠT + r · S · ΠS + 0.5 · σ2 · ΠSS = r · Π

• Notice that this pde already told us that, in order to get into a riskless position
i.e. to get the riskless rate r on the value of the portfolio Π, we have to take into
account the derivative of the portfolio vis à vis S, the derivative of the portfolio
vis à vis S2 and the derivative of the portfolio vis à vis T . These derivatives in
the fundamental pde correspond to the Greeks. Mathematically:

ΠS = ∆

ΠSS = Γ

ΠT = Θ

• For a delta-neutral portfolio, the theta depends on the value of the gamma.
Because the gamma of individual options is always positive, the theta will be
negative. This is because the time value of the option decreases with time.
Mathematically:

Θ = −0.5 · σ2 · Γ + r · Π

16.4 The Theta

• As we already know, the theta measures the rate of change of the value of the
portfolio with respect to time. This change with time is negative and corresponds
to the declining time value of the option with time.

• We can derive the expressions fo the theta for the long call and the long put
option. By default, Θ is measured in years, by dividing the Θ by 252, we obtain
daily changes. Mathematically:

Θ Long call =
S · N ′(d1) · σ

2 ·
√
τ

− r ·K · e−r·τ · N (d2)

Θ Long put =
S · N ′(d1) · σ

2 ·
√
τ

− r ·K · e−r·τ · N (−d2)

Where N ′(x) can be computed in the following way:

N ′(x) =
1

√
2π · e 1

2
·x2
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16.5 The Vega

• This parameter is not present in the Black-and-Scholes-Merton model. This is
because the Black-Scholes-Merton model assumes the the volatility is constant
over the lifespan of the option. In reality however, the volatility is time-varying.
The vega is defined as the first derivative of the value of the portfolio Π with
respect to the volatility σ. Mathematically, this becomes:

ν =
δΠ

δσ

• The vega of the underlying asset is equal to zero. This is because, from a risk-
neutral perspective, the value of the underlying asset does not depend on the
volatility of that asset. The vega of the portfolio ν Π can therefore only be changed
by adding options to the portfolio.

• The vega of the long call option and the long put option is given by the following
expression:

ν Long call = ν Long put = S ·
√
τ · N ′(d1)

• Assume that the vega of our portfolio is denoted by ν Π and the vega of the option
we add to the portfolio is denoted by ν Option. In order to make the portfolio
vega-neutral, we choose n in such a way that the following expression holds true:

ν Π + n · ν Option = 0

16.6 Delta-Gamma-Vega Hedging

• The aim of a option-portfolio trader will be to make his portfolio delta-neutral,
gamma-neutral and vega-neutral.

– In order to make the portfolio delta-neutral the trader can add a position in
the underlying asset to his portfolio.

– In order to make the portfolio gamma-neutral of vega-neutral, the trader
will have to add option positions to his portfolio.

– The portfolio has to be made gamma-neutral and vega-neutral at the same
time. This is only possible when the hedger uses two separate option
contracts. This gives us a system of two equations in two unknown variables
n1 and n2 which represent the size of the position in the first option contract
and the size of the position in the second option contract. The first option
contract is added to the portfolio in order to make the portfolio gamma-
neutral. The second option contract is added to the portfolio, in order to
make the portfolio vega-neutral. Mathematically:{

ΓΠ + n1 · Γ1 + n2 · Γ2 = 0

ν Π + n1 · ν1 + n2 · ν2 = 0
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– The gamma-vega neutral portfolio can be made delta-neutral by adding a
position in the underlying asset.

16.7 The Rho

• The Black-Scholes-Merton model assumes a constant riskless interest rate over
the lifespan of the option. In reality however, interest rates vary with time. The
rho is defined as the first derivative of the value of the portfolio Π with respect to
the risk-free interest rate r. The rho measures the sensitivity of the value of the
option portfolio with respect to a change in the interest rate. Mathematically,
this becomes:

ρ =
δΠ

δr

• The rho of the long call option and the long put option are given by the following
expressions:

ρ Long call = K · τ · e−r·τ · N (d2)

ρ Short call = −K · τ · e−r·τ · N (−d2)
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